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Chapter 4

λ AND OVERLAPPING GENERATIONS

4.1 Introduction

The reproduction of natural populations is not always well-characterized by a model with

discrete generations. In particular, of the species of Pacific salmon, only the pink salmon,

Oncorhynchus gorbuscha, has a discrete-generation life history; all pink salmon, within

their native range, mature at two years of age. The other species of Pacific salmon mature,

reproduce, and senesce at a variety of ages. For example, a spawning collection of chinook

salmon might consist of three-, four-, five-, and six-year old fish. Each different year class

has descended from a different collection of reproducing parents.

These factors complicate the estimation of effective size in salmon populations—the

Wright-Fisher model simply does not describe their life history very well. In simulation

studies, however, Waples and Teel (1990) and Waples (1990a) show that many quantities

of interest, such as allele frequency variance, rate of loss of heterozygosity, and the rate of

loss of rare alleles, in a salmon population all depend on the average generation length and

the effective number of breeders per year, Nb. Waples (1990b) demonstrates that there

is an approximately linear relationship between Wright’s F -statistic and 1/Nb in salmon

populations. He then shows how that relationship may be used to estimate the harmonic

mean Nb from genetic samples of juveniles descended from temporally-spaced brood years.

The goals of this chapter are different. Rather than estimating an overall effective

number of breeders for the population, the interest here is in estimating a λ-like quantity—

a ratio of effective spawners to the census number of spawners—given data on the census

sizes of fish of different age-groups and genetic data either from adults or juveniles or both.

This goal is pursued within the context of a long time series of demographic and genetic data

of the sort that should become increasingly available due to the falling costs of genotyping



75

and the ability to amplify DNA from archived fish materials (Nielsen et al. 1999). For

example, Ardren (1999) describes extensive fish scale collections from two intensively-

studied steelhead (Oncorhynchus mykiss) populations on the West Coast. These fish scales,

taken from both spawning adults and outmigrating juveniles allow the age of each fish to be

determined. Also, as Miller and Kapuscinski (1997) and Ardren (1999) have shown,

microsatellite loci may be reliably amplified from these fish scales. Furthermore, Canadian

fisheries agencies together with other scientists have proposed launching a program of close

genetic monitoring of a “reference” stream on the coast of Vancouver Island, in which

spawners are carefully counted and samples from the population are genotyped on a regular

basis (William Ardren, pers. comm.). The data-analysis framework described in this chapter

would be very appropriate for such monitoring programs.

While we will conceptually think in terms of a λ for each age group of adults, we will

rely heavily on the urn model for genetic inheritance, described in the last chapter, in order

to derive a probability model and develop Markov chain Monte Carlo (MCMC) methods for

computing the posterior probabilities of the parameters. Having such a model in which the

census number of breeders is considered known, and is used in the probabilistic model for

the population, but in which the corresponding effective size may be altered by changing a

simple parameter which does not alter the census sizes, is crucial to formulating a reasonable

probability model. In the following section I develop the probability model and several

extensions to accommodate different sampling strategies and the occurrence of null alleles.

In Section 4.3, I exploit the simple neighborhood structure in the model to develop single-

site Metropolis-Hastings updates for the latent variables in the model. These updates form

the basis of a Markov chain from which we may sample from the posterior distribution of the

parameters of interest. I represent the dependence structures using the intuitively appealing

“language” of graphical models. Since I use only the simplest results from the theory of

graphical models, it should be self-explanatory to most. However, the reader interested in

learning more about graphical models in statistics is referred to the comprehensive text by

Lauritzen (1996). Finally, in Section 4.5, I demonstrate the potential of the method in

several small trials on genetic data simulated using census size estimates of chinook salmon

from a Snake River tributary. The results suggest that the method works under such
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conditions. However, future work assessing the robustness of the method to departures

from the assumed model and characterizing the mixing properties of the sampler under

different data scenarios is warranted.

Earlier work that I did on this topic involved an extension of the methods of Chapter 2

to a case with a Pacific-salmon-like life history. I did not pursue that approach any further,

but I include a brief description of it in Appendix B. The urn model provides a superior

approach.

4.2 Overlapping Generations via an Urn Model

The urn model for genetic inheritance described in the previous chapter provides a good

mechanism for modeling genetic drift in populations with complex life histories, like those

of Pacific salmon. This section describes how it may be applied in such a context. First

we shall examine a model for the conditional dependence structure of the variables in such

a population, without reference to specific probability distributions. We then “clothe that

backbone” with the specific probability distributions chosen to represent the population-

genetic sampling, as well as the taking of genetic samples from juveniles and adults.

4.2.1 Dependence structure with the Pacific salmon life history

We consider a population of dioecious, diploid, semelparous organisms, in which adults

may mature and mate between the ages of a− and a+, inclusive, and from which it is

straightforward to sample and count the reproductive adults separately from the rest of the

population (as is the case with Pacific salmon). For example, a pink salmon population

would have a− = a+ = 2, while for a species like chinook salmon in some rivers a− might be

3 and a+ might be 5 or 6. Assume that accurate estimates of the census sizes of adults of

different age classes are available over a specific time period beginning at t = 0 and ending

at t = T . The census of a-year-old adults breeding at time t is denoted Ct,a. We shall regard

these estimates as known without error. Additionally, we shall assume that the number of

juveniles each year has been estimated, or can be specified (to within a rough approximation,

at least) based on the number of adults giving rise to them. We denote the estimated juvenile
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population size at time t by Jt. We will assume that this population behaves in genetic

terms as if it were an ideal population governed by a parameter λ which can be construed

as a vector having several components—one for each age group (λa− , . . . , λa+) and one for

the sampling from adult into juvenile or gamete stages, say λ(w). This will become more

clear when we actually start assigning probability distributions in this model.

Furthermore, assume that genetic samples are available from the adult and juvenile

populations at t = 0, t = T , and at least some (and preferably many) time points in

between. It must be possible to determine the age of adults, so that the genetic samples can

be regarded as drawn from adults of known ages. Adult ages can be determined from scales

or otoliths taken from individuals. Likewise, when sampling juveniles we shall assume that

it is possible to sample reliably from a single age class of juveniles, so that they are known

to have descended from a particular brood year of adults. This is possible, in practice,

because juveniles of many species of salmon will migrate to the ocean at a single, early

age; thus, the juveniles in a stream in a given season will all be of a known age class. For

species, like steelhead, in which the freshwater residence time of juveniles may vary widely

from individual to individual, juvenile age, like adult age, can be determined from scales or

otoliths as well.

The genetic samples involve typing individuals at L loci assumed to be independently

segregating. In such a case, it is easy to combine data from the multiple loci, so I will

describe the methodology in detail for a single locus only, and then later describe how to

combine data from multiple loci. From this single locus, let K alleles be observed in the

genetic samples from adults and juveniles. St,a denotes the sample size of adults of age a

taken at time t, and Y t,a = (Yt,a,1, . . . , Yt,a,K) is a vector of allele counts for the K different

alleles observed in the sample of a-year-olds at time t. Likewise, we denote sample sizes from

juveniles at time t by Rt, and the observed numbers of alleles from a sample of juveniles at

time t by the K-vector, Zt = (Zt,1, . . . , Zt,K).

The unobservable, or latent variables in this model are the allele counts in the adults

of different ages at each of the times t, Xt,a = (Xt,a,1, . . . , Xt,a,K), and the allele counts

amongst the juveniles at the different times t, W t = (Wt,1, . . . ,Wt,K). Note that the sum

of the K components of Xt,a is 2Ct,a, and the sum of the components of W t is 2Jt.
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Before specifying probability distributions for the observed genetic samples and for the

transitions between the latent variables, it is helpful to simply consider the conditional

dependence structure between the variables, given the overlapping year-class nature of the

population’s reproduction. We will first investigate this dependence structure under the

assumption that individuals sampled from amongst the adults are not then precluded from

reproducing themselves. This corresponds to Sampling Scheme I of Nei and Tajima (1981)

(without the restriction that the census size is equal to the effective size of the population).

This sort of sampling would be realized if non-invasive genetic sampling (e.g., fin clips)

was used, or if adults were sampled destructively after spawning. I will consider Sampling

Scheme II in Section 4.2.2.

Figure 4.1 shows an acyclic directed graph for a hypothetical population in which T = 7,

a− = 2, and a+ = 4. In this graph, the arrows may be taken to represent a temporally-

defined dependence. That is, c −→ d may be read to mean “c is a variable that ‘occurs’

before d in time, and upon which the distribution of d depends.”1 The form of the graph

thus follows exactly from what we know about reproduction in a population of Pacific

salmon from which we sample both juveniles and adults. The shape of the graph also

admits a simple factorization of the joint probability of all the variables involved. To

express this succinctly, the following notation will be useful: let the set of relevant times

and ages be denoted T = {(t, a) : 0 ≤ t ≤ T, a− ≤ a ≤ a+}. The set of times and

ages which are “initial points” are those for which we must posit a prior distrubution for

adult allele counts over which we will integrate. This set is P = {(t, a) ∈ T : t − a < 0},
and we will use the shorthand XP to refer to the latent allele counts in adults of those

ages and times. In the graph of Figure 4.1, the elements of XP are surrounded by dotted

circles. We will refer to the set of pairs, (t, a) which are not in P as being in the set

Pc = {(t, a) ∈ T : t − a ≥ 0}. We shall denote by SY = {(t, a) ∈ T : St,a > 0} the

set of times and ages for which we have drawn genetic samples from the adults. Similarly,

the set of all times for which a genetic sample from the juveniles has been taken will be

1The variable c is said to be a “parent” of d, and variable d is called a “child” of variable c. This
terminology will be used later in the context of moralizing directed graphs to find neighborhoods of
variables.
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denoted by RZ = {t : 0 ≤ t ≤ T,Rt > 0}. And finally let the bold roman versions of each

variable refer to sets of variables as follows: Y = {Y t,a : (t, a) ∈ SY}, Z = {Zt : t ∈ RZ},
X = {Xt,a : (t, a) ∈ T }, and W = {W t : 0 ≤ t ≤ T}.

The joint probability of the observed and latent variables may then be written as

Pλ(Y,Z,X,W) = Pλ(XP) (4.1)

×
∏

(t,a)∈SY

P (Y t,a|Xt,a)×
∏
t∈RZ

P (Zt|W t)

×
∏

(t,a)∈Pc
Pλ(Xt,a|W t−a)×

∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+)

where P (·|·) denotes a conditional probability distribution function not depending on λ,

Pλ(·|·) a conditional distribution depending on λ and Pλ(XP) is the prior probability of

XP , which also depends on λ. This prior distribution, Pλ(XP), must necessarily be a

joint distribution on the components of XP , since we expect that those components will be

dependent. I will treat this in more detail in Section 4.2.5, but for now we take the joint

prior distribution as given. The two terms on the second line of (4.1) are the probabilities of

the observed allele counts in all the samples of adults and juveniles, respectively. The two

terms on the third line of the equation are 1) the probabilities due to population-genetic

sampling of the latent allele counts in the adult groups given the juvenile cohorts to which

they belonged, and 2) the probability of the latent allele counts amongst a juvenile cohort

given all the adult age classes contributing to it.

4.2.2 Dependence structure under Sampling Scheme II and with null alleles

The dependence structure described in the previous section applies to many situations, but

one may encounter other cases which require extensions to that basic dependence structure.

Here I will deal with two such cases: 1) that when the genetic sampling is destructive

and occurs before reproduction, so that individuals which are sampled do not have the

opportunity to contribute offspring to the following years, and 2) the case of alleles that are

not codominantly expressed.

Nei and Tajima (1981) used the name “Sampling scheme II” for the case when the
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Y t,2 Y t,3 Y t,4

X t,2

X t,3

X t,4

W t

Zt

Figure 4.2: Acyclic directed graph describing the conditional dependence structure in the
probability model for overlapping generations at year t, with three age classes of adults
(2,3,4), under Sampling Scheme II—sampling adults destructively and before reproduction.
The arrows connecting these variables to other times are omitted in this figure.

census size is larger than the effective size, and the genetic samples are destructively obtained

before the organism is able to reproduce. Waples (1989) showed that the two sampling

schemes could be handled within the same general F -statistic framework, with only a slight

difference in the formulae for converting estimates of F to estimates of Ne. In our case,

using a probability model derived from the urn model of the previous chapter, if the census

size of the population is known, then the two different sampling plans can be treated using

the different probability distributions that they give rise to.

The dependence structure of Figure 4.1 applies to Sampling Scheme I. For Scheme II,

the dependence structure is different. Because the sampling is destructive, the gene copies

sampled are not available to contribute gametes to the gamete pool. Hence, Wt will depend

upon both Xt,a and Yt,a for a− ≤ a ≤ a+. Figure 4.2 shows the dependence structure

between the variables in a year t under Sampling Scheme II. The arrows between years are

not shown, though they occur in the same places and directions as in Figure 4.1. Note the

inclusion of the arrows (shown with finely dotted lines) from the samples to the gamete

pool. This implies a modification of (4.1), changing the last factor to be

∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+ ,Y t,a− , . . . ,Y t,a+). (4.2)
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It would not be difficult to modify the dependence structure further to account for the

destructive genetic sampling of juveniles. However, I do not pursue that here, assuming

instead that the gamete/juvenile pool from which samples are drawn is large enough that

the effect of removing a sample of juveniles has little impact on the allele frequencies which

will occur in the spawning populations of mature organisms.

Another complication which is frequently encountered is the occurrence of alleles that

are not codominantly expressed. In this case, it is often possible to detect homozygotes of

a particular allele, but the heterozygotes appear to be homozygotes of an alternate allele.

This adds another layer of complexity to the model. The reason for this is that, when

some alleles cannot be reliably detected in heterozygote form, it is not possible to actually

observe allele counts Y t,a in samples taken from the adults. Instead one observes only the

counts of phenotypes (heterozygotes and apparent homozygotes) of different types, which I

shall denote by G(Y,o)
t,a for (t, a) ∈ SY. The superscript (Y,o) refers to the fact that these are

the observed phenotypes in the sample from adults. Similarly, the samples from juveniles

permit only the observation of phenotypes which will be denoted by G(Z,o)
t , t ∈ RZ. Part of

G(Y,o)
t,a and G(Z,o)

t should be thought of as symmetrical matrices with (i, j)
th

element equal

to (j, i)th element and giving the number of observed phenotypes with a copy of allele i

and a copy of allele j (i, j codominant). One additional category of phenotypes must be

included in both G(Y,o)
t,a and G(Z,o)

t . For this we use G(Y,o)
t,a,− and G(Z,o)

t,− , to denote the number

of individuals in the samples from adults and juveniles, respectively, in which no bands

on a gel were detected. For example, if only allele i at a locus was undetectable, then for

the sample from juveniles at time t, G(Z,o)
t,i,j would be zero, G(Z,o)

t,j,j would be the sum of the

number of (j, j) genotypes and the number of heterozygotes of i and j, and G(Z,o)
t,− would be

the number of (i, i) homozygotes.

Computing the probability of G(Y,o)
t,a given Xt,a or G(Z,o)

t given W t would require a sum

over all possible unobserved genotypes consistent with the observed phenotypes. To avoid

having to do that sum directly, we will introduce more latent variables and effectively sum

over them using MCMC. This also greatly simplifies the joint probability function in the

case of Sampling Scheme II in the presence of null alleles. The new latent variables are

G(Y,`)
t,a and G(Z,`)

t , which are analogous to the symmetrical matrix portions of G(Y,o)
t,a and
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Figure 4.3: Acyclic directed graphs describing the conditional dependence structure in the
probability model for overlapping generations at year t with three age classes (2,3,4) and
with some alleles not codominantly expressed. The arrows connecting these graphs to other
times are omitted in this figure. (a) Sampling Scheme I, sampled adults still contribute
offspring to future generations (b) Sampling Scheme II, adults sampled destructively.

G(Z,o)
t , except that they count the number of different types of genotypes that would be

observed if all the alleles were fully penetrant. Note that there is a many-to-one map from

the space of G(Y,`)
t,a to that of G(Y,o)

t,a , and similarly from the space of G(Z,`)
t to G(Y,o)

t .

So long as the genetic transmission processes we consider are exchangeable, the de-

pendence structure between these new variables within a year is given by the graph of

Figure 4.3(a) for Sampling Scheme I and Figure 4.3(b) for Sampling Scheme II. The joint

distribution of all the variables involved can then be written similarly to (4.1). Using the

notation G(Y,o) = {G(Y,o)
t,a : (t, a) ∈ SY} and G(Z,o) = {G(Z,o)

t : t ∈ RZ} along with
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G(Y,`) = {G(Y,`)
t,a : (t, a) ∈ SY} and G(Z,`) = {G(Z,`)

t : t ∈ RZ}, we have

Pλ(G(Y,o),G(Z,o),G(Y,`),G(Z,`),X,W) = (4.3)

Pλ(XP) ×
∏

(t,a)∈SY

P (G(Y,o)
t,a |G

(Y,`)
t,a ) ×

∏
t∈RZ

P (G(Z,o)
t |G(Z,`)

t )

×
∏

(t,a)∈SY

P (G(Y,`)
t,a |Xt,a) ×

∏
t∈RZ

P (G(Z,`)
t |W t)

×
∏

(t,a)∈Pc
Pλ(Xt,a|W t−a) ×

∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+)

for Sampling Scheme 1. For Sampling Scheme II, the final term in the product must be

replaced by ∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+ ,G(Y,`)
t,a− , . . . ,G

(Y,`)
t,a+ ).

Specification of the probability functions specific to sampling with recessive alleles is deferred

until Section 4.2.4.

4.2.3 Specifying probability distributions

The graph of Figure 4.1 and the corresponding factorization of Equation 4.1 (as well as their

extensions for the special cases described above) indicate that the probability model here

may be fully defined by assigning distributions to Pλ(XP) and the different Pλ(·|·) and P (·|·)
distributions. Specifying these distributions requires several assumptions to be made about

how reproduction occurs. In general, I shall model population-genetic sampling by Pólya

urn models, and the drawing of genetic samples by sampling without replacement from the

populations. In this context, sampling “without replacement” is not referring to whether

or not sampled individuals are able to reproduce; it is referring to how the genetic samples

are obtained. Certainly, destructive genetic sampling will occur without replacement, but

even non-invasive sampling could occur without replacement since any previously-sampled

fish will bear marks (for example the loss of a fin clipped for genetic sampling) that should

prevent it from being sampled twice. For the samples taken from a large pool of juveniles,

there will be little difference between the multivariate hypergeometric sampling implied
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by sampling without replacement and the multinomial sampling implied by sampling with

replacement.

The simplest transition to model is that described by Pλ(Xt,a|W t−a). This is the

population-genetic sampling which occurs when juveniles from time t− a are “selected” or

“sampled” to survive to be reproducing adults of age a at time t. This depends on λa,

and, following Equation 3.17 on Page 63, may be parametrized in terms of a stochastic

replacement quantity ϕt,a which depends on the juvenile census size, Jt−a, the adult census

size, Ct,a, and λa:

ϕt,a =
2Jt−a(1− λa)
2λaCt,a − 1

. (4.4)

Thus, given W t−a, Xt,a follows the compound multinomial distribution (3.3). The proba-

bility mass function may be expressed, similarly to (3.3), as a normalizing constant times a

product of K terms corresponding to the K different alleles:

Pλ(Xt,a|W t−a) = P (Xt,a|W t−a, λa, Ct,a, Jt−a)

= P (Xt,a|W t−a, ϕt,a, Ct,a)

=
(2Ct,a)! Γ(α•)
Γ(2Ct,a + α•)

K∏
i=1

(
Γ(Xt,a,i + αi)
Xt,a,i! Γ(αi)

)
(4.5)

where αi = Wt−a,i/ϕt,a and α• =
∑K

i=1 αi.

Modeling the stochastic process and distribution for Pλ(W t|Xt,a− , . . . ,Xt,a+) is more

difficult, and requires that more assumptions be made about reproduction and survival in

the population. The particular problem that arises is that the distribution of W t depends

not only on the vagaries of sampling alleles from within each age class of adults (i.e.,

non-multinomial sampling of gene copies from amongst the Ct,a a year-olds), but also on

the fact that adults of different age classes may produce different mean numbers of juvenile

offspring, either by producing more gametes or by producing individuals with higher survival

to the juvenile stage. This second effect is akin to that discussed in Ryman and Laikre

(1991), in which the inbreeding effective size of a population is decreased due to the higher

survivorship of a segment of the population included in a supportive breeding program.

Since it is impossible to determine the age of the parent of any gene copy sampled amongst
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juveniles, these two sources of variation in W t are confounded and may not be separated.

Rather than include these two confounded processes in a model which is not identifiable, I

assume an ideal model for the production of juveniles from adults of different age classes,

and then account for both of the above-mentioned processes by a single parameter in an

urn model scheme.

This ideal model assumes that each adult at time t produces an age-specific number

of gametes, and the survivors to the juvenile stage are sampled from those gametes by an

urn scheme with stochastic replacement parameter ψt. More specifically, each diploid adult

of age a contributes γa copies of each of its two gene copies to the gamete pool. Thus,

the counts of the different alleles in the gamete pool at time t are given by the K-vector

Bt = (Bt,1, . . . , Bt,K) =
∑a+

a=a− γaXt,a. Then, the 2Jt gene copies in the juveniles are

sampled from this gamete pool via a Pólya urn scheme in which the stochastic replacement

quantity depends on the parameter λ(w)—the conceptual ratio of “effective juveniles” to the

census number of juveniles. Letting Bt,• denote the total number of gametes in the gamete

pool at time t (Bt,• =
∑a+

a=a− 2γaCt,a =
∑K

i=1Bt,i), then, once again by Equation 3.17 on

Page 63, we have the stochastic replacement

ψt =
Bt,•(1− λ(w))
2λ(w)Jt − 1

. (4.6)

And so, the conditional probability Pλ(W t|Xt,a− , . . . ,Xt,a+) may now be expressed as

Pλ(W t|Xt,a− , . . . ,Xt,a+) = P (W t|Xt,a− , . . . ,Xt,a+ , Ct,a− , . . . , Ct,a+ ,γ, Jt)

= P (W t|Bt, ψt, Jt)

=
(2Jt)! Γ(α•)
Γ(2Jt + α•)

K∏
i=1

(
Γ(Wt,i + αi)
Wt,i! Γ(αi)

)
(4.7)

where αi = Bt,i/ψt and α• =
∑K

i=1 αi.

The quantities γ = (γa− , . . . , γa+) may be interpreted as fitness measures for different

age classes expressing how successful they are at producing juveniles of sampling age. In

practice, γa can be chosen to reflect the biology of the situation. For example, a reasonable

choice for salmon would be one half the fecundity of age a females. It should be clear from



87

the above expression, that the absolute magnitudes of the γa’s are actually irrelevant; the

parametrization of ψt in terms of Jt and the relationship between αi, Bt,i, and ψt ensure

that the relative sizes of the γa’s are all that matter. Nonetheless, it is computationally

convenient to think of the γa’s in terms of the number of gametes produced.

Another, and a possibly more elegant, interpretation of this population-genetic sampling

scheme for juveniles is provided by the conditional branching process model of Karlin

and McGregor (1965) with negative binomial distributions of offspring number (see Sec-

tion 3.4). In this interpretation, the total number of juvenile gene copies is fixed to be

2Jt, however the distribution of the number of copies of each gene within an age a adult

appearing among the juveniles is exchangeably negative binomial with arbitrary (but equal

for all genes) scale parameter β, and shape parameter γa/ψt. By such an interpretation it

is perhaps even more clear that ψt, the stochastic replacement quantity for reproduction

into juveniles at time t, represents both non-Wright-Fisher sampling within age classes, but

also a departure from our best guess as biologists as to the fitnesses/fecundities of adults of

different age classes. Since both the non-Wright-Fisher sampling within age classes, and the

unkown differential survival between age classes reduce effective size of populations, and will

therefore affect λ, it seems quite reasonable that both are accounted for in the parameter

λt.

In the case of Sampling Scheme II, in which adults are destructively sampled before

reproduction, defining the probability function Pλ(W t|Xt,a− , . . . ,Xt,a+ ,Y t,a− , . . . ,Y t,a+)

requires only a simple modification to the above mechanism for transmission of genes to

juveniles. Since sampled adults do not contribute to future generations, we need merely

define Bt,i so as to reflect that. Namely, Bt,i =
∑a+

a=a− γa(Xt,a,i − Yt,a,i), and Bt,• must be

modified accordingly: (Bt,• =
∑a+

a=a− 2γa(Ct,a−St,a) =
∑K

i=1Bt,i). For Sampling Scheme II

in the presence of null alleles, Yt,a,i in the immediately preceding sentence may be replaced

by the quantity Y (`)
t,a,i described in the next section.

Finally, we only have to specify probability distributions for the genetic samples drawn

from adults and juveniles, P (Y t,a|Xt,a) and P (Zt|W t). As stated at the beginning of this

section, sampling without replacement is a good model for the acquisition of genetic sam-

ples. With multiple alleles, this leads to the multivariate hypergeometric distribution (see
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Johnson et al. 1997, Chapter 39). This distribution may also be written as a normalizing

constant multiplied by a product of K terms, one for each of the K alleles. So, for the

genetic samples taken from adults we have

P (Y t,a|Xt,a) =
(2Ct,a − 2St,a)!(2St,a)!

(2Ct,a)!

K∏
i=1

Xt,a,i!
(Xt,a,i − Yt,a,i)!Yt,a,i!

. (4.8)

For genetic samples taken from the juveniles, we can also use the multivariate hyperge-

ometric distribution

P (Zt|W t) =
(2Jt − 2Rt)!(2Rt)!

(2Jt)!

K∏
i=1

Wt,i!
(Wt,i − Zt,i)!Wt,i!

, (4.9)

or, since the number of juveniles is typically large, modeling the process as sampling with

replacement will yield essentially the same result, and so the multinomial probability dis-

tribution is appropriate:

P (Zt|W t) = (2Rt)!
K∏
i=1

[Wt,i/(2Jt)]Zt,i

Zt,i!
. (4.10)

Notice that (4.10) also includes a simple product of terms over alleles.

4.2.4 Probabilities with recessive alleles

For recessive or null alleles at a locus with K alleles, I assume Hardy-Weinberg equilibrium

and a simple penetrance model which may be summarized by the matrix A having elements

ai,j , 1 ≤ i, j ≤ K. ai,j = 0 implies that an allele of type i is detectable (i.e., leaves a band

on a gel) when it occurs in the same individual as an allele of type j. If i subscripts a null

allele, than ai,i = 0 and also ai,j = 0 for all other j. This penetrance model can also account

for other simple dominance relationships between alleles (e.g., ai,j = 0 but ai,i = 1).

Given the latent genotypes of sampled juveniles, G(Z,`)
t , the observed phenotypes can be

found by G(Z,o)
t,i,i = ai,iG

(Z,`)
t,i,i +

∑
j 6=i ai,j |aj,i−1|G(Z,`)

t,i,j and, for j 6= i, by G(Z,o)
t,i,j = ai,jaj,iG

(Z,`)
t,i,j .

The number of individuals showing no bands, G(Z,o)
t,− , is found by subtraction, being half

the number of gene copies not otherwise accounted for. Since there is a deterministic map

from G(Y,`)
t,a to G(Y,o)

t,a , P (G(Y,o)
t,a |G

(Y,`)
t,a ) will take the value one whenever G(Y,`)

t,a is consistent

with G(Y,o)
t,a and zero otherwise. The map from G(Y,`)

t,a to G(Y,o)
t,a works similarly. Notice also
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that the allele counts in the sample may be easily obtained from G(Y,`)
t,a or G(Z,`)

t . We will

denote these as Y (`)
t,a and Z(`)

t , respectively.

Deriving the probability distribution P (G(Y,`)
t,a |Xt,a) under the assumption of sampling

without replacement requires some combinatoric calculations. Since the fates of gene copies

in the genetic transmission and sampling models adopted here are exchangeable, the prob-

ability of every ordering of gene copies into the adults in the population, and therefore into

the sampled adults from the population, is the same. Therefore P (G(Y,`)
t,a |Xt,a) may be

found by counting the ways of drawing particular combinations of pairs of genes, G(Y,`)
t,a ,

from the allele counts in the adults Xt,a, and dividing by the total number of ways of draw-

ing any St,a pairs from the population. I show this below, suppressing the t,a subscript

and (Y,`) superscript on elements of G(Y,`)
t,a , the t,a subscript on elements of Xt,a and on

the population and sample sizes Ct,a and St,a, and the (`) superscript and t,a subscript on

elements of Y (`)
t,a.

First, the denominator of the probability P (G(Y,`)
t,a |Xt,a) is the number of ways of drawing

an unordered collection of S unordered pairs from a population of 2C gene copies, which is

1
S!

S−1∏
i=0

( 2C − 2i

2

)
=

(2C)!
2SS!(2C − 2S)!

. (4.11)

The product of binomial coefficients arises from sequentially choosing unordered pairs with-

out replacement, and the 1/(S!) accounts for the different orders in which those pairs may

be drawn.

The numerator of P (G(Y,`)
t,a |Xt,a) may be written as

K∏
i=1

( Xi

Yi

)
· Yi!

(2Gi,i)!
∏
j 6=iGi,j !

· (2Gi,i)!
2Gi,iGi,i!

·
∏
j<i

Gi,j !

 (4.12)

and explained as follows: we have a product over alleles of four factors; the first factor

is a binomial coefficient that counts the number of ways of choosing Yi gene copies of

type i from a population having Xi such gene copies. The second factor is a multinomial

coefficient which counts the ways of partitioning those Yi gene copies into the groups of

genes participating in the different categories of genotypes. The third factor counts the

number of ways 2Gi,i gene copies of allelic type i can be paired up into Gi,i unordered
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homozygous genotypes (this is a special case of (4.11)). And, finally, Gi,j ! is the number

of ways of making Gi,j heterozygote genotypes from Gi,j copies of alleles of type i and Gi,j

copies of alleles of type j. The product of Gi,j ! is taken over j < i since, in combination

with the other product from i = 1 to K, this leads to the product over all heterozygote

classes.

Equation 4.12 simplifies modestly so we may write our desired probability as

P (G(Y,`)
t,a |Xt,a) =

∏K
i=1

(
Xi!

(Xi−Yi)! ·
1

2Gi,i
∏K
j=1 Gi,j !

·
∏
j<iGi,j !

)
(2C)!

2SS!(2C−2S)!

. (4.13)

This is (4.12) divided by (4.11). The same is true for P (G(Z,`)
t |W t) using J and R, and

with Z’s replacing Y ’s and W ’s replacing X’s, under the assumption that sampling from

juveniles is done without replacement. Under the assumption that sampling from juveniles

is done with replacement, P (G(Z,`)
t |W t) is a simple expression given by a multinomial

distribution with cell probabilities being the genotype frequencies expected under Hardy-

Weinberg equilibrium.

4.2.5 The prior distribution for allele counts

The prior distribution P (XP) presents some interesting difficulties. Ideally, we would like

to use some sort of stationary distribution of allele counts XP for the salmon population

under study. However, this is difficult, first, because with fluctuating sizes, the population

allele frequencies won’t strictly have a stationary distribution, and second, because even if

we knew the historical sizes of the population, it would not be straightforward to determine

the distribution of XP . Below, I present, in series, several different ways of handling the

prior, Pλ(XP), starting with the most naive. In practice, some combination of the methods

described below will probably work best. The choice of which to use is a matter of balance

between reflecting the reality of the situation and imposing too much (and possibly incorrect)

structure on the latent variables, which will affect the inferences made.

The most naive approach would be to use independent priors for the components of XP .

Independent, uniform priors, for example, would assert very little a priori structure on the

model. This is naive because some of the components of XP reflect fish that have matured



91

from the same pool of juveniles. Clearly, allele frequencies amongst adults matured from

the same cohort of juveniles will be correlated. Fortunately, if a large sample has been taken

from every time and age in P, then the choice of prior may have little effect since those

data (let us call them YP) will constrain XP considerably.

An improvement on the above can be made by adding to the model the allele counts

in juvenile pools contributing to the adult populations of P. For example, extending the

graph in Figure 4.1 to include juvenile pools in “negative time,” we could have the variable

W−1, from which X1,2, X2,3, and X3,4 are drawn; W−2 parental to X1,3 and X2,4 in

the graph; and W−3 parental to X1,4. Then, even with independent prior distribution on

W−3, W−2, and W−1, the correlation between X1,2, X2,3, and X3,4 would be modeled, as

well as that between the other elements of XP . In general, this approach requires specifying

a+ new variables, W−a+ , . . . ,W−1, and giving them independent priors. While this is a

great improvement over the first approach, it still does not account for the correlation that

is bound to exist between the allele counts in the juvenile pools in “negative time.” An ad

hoc approach to doing so is described in the following method.

An approximate relationship between the variables (W−a+ , . . . ,W−1) can be derived

using the work of Waples (1990b) which explores the expected F -statistics between the

allele frequencies corresponding to W−a+ and the remaining components, as a function

of the effective number of breeders Nb and the proportion of fish maturing at different

ages. Consider a salmon population progressing through time with effective numbers of

spawners Nb, possibly changing each year, and with f = (fa− , . . . , fa+) being a vector of

proportions giving the probability that a fish matures at a particular age. Through computer

simulation of such a population, Waples (1990b) found a linear relationship between the

expected value of F computed from allele frequencies in the gamete pools separated by t

years and the inverse of twice the harmonic mean effective number of breeders (Ñb) in the

t years between the gamete pools considered. He also showed that the slope of this linear

relationship depends on t and the proportions f . We will denote this slope by the function

∆t(f). Tajima (1992) gives a convenient recursive algorithm for computing ∆t(f). In our

case, denoting the allele frequency in a juvenile or gamete pool at time i by pi, Waples
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(1990b) empirically shows that

E[(p−a+ − pi)2]
p−a+(1− p−a+)

≈ ∆i+a+(f)
2Ñb

(4.14)

for i = −a+ + 1, . . . ,−2,−1. If we assume that the juvenile/gamete pools in these years

are all of the same size, J (−) diploids (the superscript (−) refers to these being in “negative

time”), and the expected value of each of W−a++1, . . . ,W−1 is W−a+ , then, by (4.14), we

have for allele j at time i

Var(Wi,j |Wa+,j) = E[(2J (−))2(p−a+ − pi)2]

≈ (2J (−))p−a+(1− p−a+)

(
(2J (−))∆i+a+(f)

2Ñb

)
. (4.15)

This is the variance of a binomial random variable with 2J (−) trials and success prob-

ability pa+ , multiplied by the term in the large parentheses. That, in turn, is the form

of the variance of a beta binomial random variable. From the discussion in Section 3.3

(Page 55) of the relationship between the variance of beta-binomial and binomial random

variables, it may be seen that a distribution satisfying the variance relationship in (4.15) is

the beta-binomial distribution with 2J (−) trials and parameters αj and α• − αj such that

aj/α• = p−a+ and
2J (−) + α•

1 + α•
=

(2J (−))∆i+a+(f)
2Ñb

. (4.16)

This suggests that the following would be a reasonable way to construct a prior for the

vector (W−a+ , . . . ,W−1):

1. Assume reasonable values for the proportions of individuals maturing at different ages,

f = (fa− , . . . , fa+).

2. Let W−a+ follow a discrete uniform prior (since J (−) does not change in the MCMC

simulations, this term in the distribution will conveniently never change, either).

3. Given W−a+ , assume that W i (i = −a+ + 1, . . . ,−1) are drawn from the gene copies

in the juvenile pool at time −a+ via independent Pólya urn schemes with stochastic
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replacement quantities ψ(−)
i = 2J (−)/α•i , where α•i is calculated according to (4.16):

α•i =
2Ñb −∆i+a+(f)

∆i+a+(f)− Ñb/J (−)
. (4.17)

It can be shown that conditional on W−a+ such a distribution will have the variance

of (4.15). Although it will not properly reflect the covariance between the gamete pools,

it should be a very reasonable approximation. In practice, of course, the harmonic mean

effective number of breeders will be unknown, but one should be able to make a reasonable

estimate at the harmonic mean census number of spawners of all age groups in the a+ years

before data started being recorded for the population. Denoting that quantity as C̃(−), a

simple way of estimating Ñb given C̃(−) and λ is Ñb = λ(−)C̃(−) where λ(−) =
∑a+

a=a− faλa.

This is the way in which the prior distribution depends on λ.

Finally, if census sizes (or estimates thereof) of the different aged fish in the population

are known in the years before the genetic data started being collected, that information

can similarly be used to help define a prior distribution for XP . Doing so is simple—one

merely defines time 0 to be the time at which the first census size data are available. Then,

everything from the previous several paragraphs still applies for constructing a prior on

initial gamete pools, but one also has several years of census data over which Xt,a’s and

W t’s may be sampled in an MCMC sampler, helping to more accurately reflect the joint

distribution of Xt,a’s when genetic samples are finally taken.

In concluding this section, I point out that while the ad hoc approach described above

is reasonable and practical, it is not deeply satisfying. The derivation of an elegant prior

Pλ(XP) remains an interesting, open problem.

4.3 A Bayesian Formulation and MCMC Simulation from P (λ|X,W)

A Bayesian formulation of this problem is obtained by assigning a prior distribution P (λ)

for λ. This leads to the posterior distribution

P (λ|Y,Z) =
P (λ)

∑
X,W Pλ(Y,Z,X,W)∫

λ P (λ)
∑

X,W Pλ(Y,Z,X,W)dλ
(4.18)

where the integral in the denominator is over all values of λ and the sum is over all possible

values of X and W. This sum and integral are intractable. However, it is possible to simulate
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values of λ from this posterior distribution using the Metropolis-Hastings algorithm, and

thus, the posterior distribution may be evaluated by Markov chain Monte Carlo. This is

presented in overview in the following two paragraphs, and in detail in the remainder of the

section.

Given current values of X, W, and λ, a Metropolis-Hastings update step for X involves

simulating a new value X′ from a proposal distribution qX(X′|X, · · ·) that depends on X,

and possibly on the current values of other variables in the model (denoted by “· · ·”). A

uniform random variable on the unit interval U is then drawn. If U < HX then the proposal

is accepted and the value of X is changed to X′. If U > HX, then the value of X remains

unchanged. If

HX =
qX(X|X′, · · ·)Pλ(Y,Z,X′,W)
qX(X′|X, · · ·)Pλ(Y,Z,X,W)

, (4.19)

then, if qX is such that successively applying the updates using U and HX above leads to

an irreducible Markov chain of X values, that Markov chain will have limit distribution

Pλ(X|Y,Z,W). Similarly, updates to W can be made by proposing new values W′ from

qW(W′|W, · · ·), drawing U and accepting the proposal if U is less than

HW =
qW(W|W′, · · ·)Pλ(Y,Z,X,W′)
qW(W′|W, · · ·)Pλ(Y,Z,X,W)

. (4.20)

In the same way, updates to λ are made with a proposal distribution qλ(λ′|λ, · · ·) and

accepted according to the Hastings ratio

Hλ =
qλ(λ|λ′, · · ·)P (λ′)Pλ′(Y,Z,X,W)
qλ(λ′|λ, · · ·)P (λ)Pλ(Y,Z,X,W)

. (4.21)

Applying these updates in series (update X, update W, update λ, update X, update W,

and so on. . . ) leads to a Markov chain with limit distribution P (λ,X,W|Y,Z). Sampling

n values of λ visited by this chain gives a sequence λ(1), . . . ,λ(n) which may be used to

estimate P (λ|Y,Z) by Monte Carlo. The following three sections provide greater detail on

the calculations involved. Section 4.3.1 shows how to exploit the conditional dependence

structure of the graph in Figure 4.1 to simplify the calculation of Hastings ratios for X′

and W′. Then Section 4.3.2 gives a prescription for the proposal distributions qX and qW.

Finally, in Section 4.3.3, proposal distributions for λ are considered, and a Rao-Blackwellized

estimator for P (λ|Y,Z) is given.



95

4.3.1 Neighborhood structures and joint probability ratios

Making updates to X and W requires repeated calculation of the Hastings ratios (4.19) and

(4.20). This task is made easy by proposing changes only to small parts (two components,

for example) of either X or W at any one time. The neighborhood structure inherent in the

graph of Figure 4.1 and the fact that the probabilities described above can all be written in

terms of a product over the K alleles make this particularly attractive, as described below.

Let the data from the genetic samples be considered fixed at Y and Z, and suppose the

current values for X and W are denoted by X and W, respectively. Let X′ and W′ differ

from X and W only at an arbitrary, single component subscripted by (t′, a′) ∈ T for X′

and by t′ ∈ {0, . . . , T} for W′. In doing MCMC we will make frequent use of the ratios

Pλ(Y,Z,X′,W)
Pλ(Y,Z,X,W)

and
Pλ(Y,Z,X,W′)
Pλ(Y,Z,X,W)

. (4.22)

Calculating such ratios is done quickly by noting that they are functions only of a small col-

lection of variables adjacent in the graph to the altered component. The variables adjacent

to the altered component in the graph are members of its neighborhood, and the factors

in the joint density including those neighbors are the only ones that are changed by the

alteration in that component. Hence, the other factors cancel out in the ratio. The neigh-

borhoods can be graphically found and represented via the moralized, undirected graph

associated with the directed graph (Lauritzen 1996). The moralized subgraph around

Xt′,a′ (or W t′) is formed by starting with the subgraph containing all variables which are

either connected to Xt′,a′ (or W t′) by arrows in either direction or which are parents of

any children of Xt′,a′ (or W t′), and then converting all the arrows between those variables

to undirected edges and moralizing the subgraph. Moralizing is done by including edges

between any unconnected parents in the directed graph. Directed and moralized versions

of the subgraphs around X6,3 and W 3 from Figure 5.1 are shown in Figure 4.4. The corre-

sponding distribution associated with each undirected graph in the figure may be factorized

by their cliques (maximally connected subgraphs). Therefore the ratios in (4.22) may be

written as ratios of terms corresponding to the cliques. Using the notation X{t′,\a′} to refer
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Y 6,3

X6,2

X6,3

X6,4

W 3 W 6

(a)

Y 6,3

X6,2

X6,3

X6,4

W 3

W 6

(b)

X3,2 X5,2

X3,3
X6,3

X3,4
X7,4

W 3

Z3

(c)

X3,2 X5,2

X3,3 X6,3

X3,4
X7,4

W 3

Z3

(d)

Figure 4.4: Neighborhoods for the allele count amongst the juveniles and adults. (a) and
(b) are respectively the directed and the moralized, undirected subgraphs for the relevant
neighborhood in X′ with t′ = 6 and a′ = 3. (c) and (d) are the same for the neighborhood
around W 3 (i.e., t′ = 3).
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to the set {Xt′,a− , . . . ,Xt′,a+}, excluding Xt′,a′ , we have

Pλ(Y,Z,X′,W)
Pλ(Y,Z,X,W)

=
Pλ(W t′ |X ′t′,a′ ,X{t′,\a′})

Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)
×
P (Y t′,a′ |X ′t′,a′)
P (Y t′,a′ |Xt′,a′)

(4.23)

×
Pλ(X ′t′,a′ |W t′−a′)
Pλ(Xt′,a′ |W t′−a′)

for the ratio involving an altered version of X. Note that if (t′, a′) ∈ P then a term

corresponding to the prior P (XP) would also appear in the ratio. For the ratio involving

the altered version of W we have

Pλ(Y,Z,X,W′)
Pλ(Y,Z,X,W)

=
Pλ(W ′

t′ |Xt′,a− , . . . ,Xt′,a+)
Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)

× P (Zt′ |W ′
t′)

P (Zt′ |W t′)
(4.24)

×
∏

(t,a)∈Wt′

Pλ(Xt,a|W ′
t′)

Pλ(Xt′,a′ |W t′)

where Wt′ represents the times and ages of adults descended from the juvenile pool at time

t′. That is, Wt′ = {(t, a) ∈ T : t− a = t′}.
Let us now make the further restriction that X′ differs from X only in two components

of X′t′,a′ . That is to say X ′t′,a′,i and X ′t′,a′,j can take any non-negative values so long as

X ′t′,a′,i + X ′t′,a′,j = Xt′,a′,i + Xt′,a′,j . We shall make a similar restriction on W′. In such a

case, the probability ratios in (4.23) and (4.24) simplify further still, with the normalizing

constants and the terms for unaltered allele counts cancelling out. Hence we have

P (Y t′,a′ |X ′t′,a′)
P (Y t′,a′ |Xt′,a′)

=
X ′t′,a′,i!(Xt′,a′,i − Yt′,a′,i)!
Xt′,a′,i!(X ′t′,a′,i − Yt′,a′,i)!

·
X ′t′,a′,j !(Xt′,a′,j − Yt′,a′,j)!
Xt′,a′,j !(X ′t′,a′,j − Yt′,a′,j)!

(4.25)

when (t′, a′) ∈ SY and 1 otherwise. A similar expression applies to P (Zt|W ′t)
P (Zt|W t)

for sampling

without replacement from juveniles. For sampling with replacement from juveniles we have

P (Zt′ |W ′
t′)

P (Zt′ |W t′)
=
(
W ′t′,i
Wt′,i

)Zt′,i(W ′t′,j
Wt′,j

)Zt′,j
(4.26)

for t′ ∈ RZ, and 1 otherwise. For the terms having to do with population genetic sampling

into the adult stage, we have

Pλ(X ′t′,a′ |W t′−a′)
Pλ(Xt′,a′ |W t′−a′)

=
Γ(X ′t′,a′,i +Wt′−a′,i/ϕt′,a′)Xt′,a′,i!

Γ(Xt′,a′,i +Wt′−a′,i/ϕt′,a′)X ′t′,a′,i!
·

Γ(X ′t′,a′,j +Wt′−a′,j/ϕt′,a′)Xt′,a′,j !

Γ(Xt′,a′,j +Wt′−a′,i/ϕt′,a′)X ′t′,a′,j !
(4.27)
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and

Pλ(Xt′+a,a|W ′
t′)

Pλ(Xt′+a,a|W t′)
=

Γ(Xt′+a,a,i +W ′t′,i/ϕt′+a,a)Γ(Wt′,i/ϕt′+a,a)

Γ(Xt′+a,a,i +Wt′,i/ϕt′+a,a)Γ(W ′t′,i/ϕt′+a,a)
(4.28)

×
Γ(Xt′+a,a,j +W ′t′,j/ϕt′+a,a)Γ(Wt′,j/ϕt′+a,a)

Γ(Xt′+a,a,j +Wt′,j/ϕt′+a,a)Γ(W ′t′,j/ϕt′+a,a)
.

For the terms having to do with population sampling into the juvenile stage we compute

the two relevant ratios using the quantity Bt (defined on Page 86 in Section 4.2.3) and its

altered version B′t when necessary. Thus we have

Pλ(W ′
t′ |Xt′,a− , . . . ,Xt′,a+)

Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)
=

Pλ(W ′
t′ |Bt′)

Pλ(W t′ |Bt′)
(4.29)

=
Γ(W ′t′,i +Bt′,i/ψt′)Wt′,i!

Γ(Wt′,i +Bt′,i/ψt′)W ′t′,i!
·

Γ(W ′t′,j +Bt′,j/ψt′)Wt′,j !

Γ(Wt′,j +Bt′,j/ψt′)W ′t′,j !

and

Pλ(W t′ |X ′t′,a′ ,X{t′,\a′})
Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)

=
Pλ(W t′ |B′t′)
Pλ(W t′ |Bt′)

(4.30)

=
Γ(Wt′,i +B′t′,i/ψt′)Γ(Bt′,i/ψt′)

Γ(Wt′,i +Bt′,i/ψt′)Γ(B′t′,i/ψt′)

×
Γ(Wt′,j +B′t′,j/ψt′)Γ(Bt′,j/ψt′)

Γ(Wt′,j +Bt′,j/ψt′)Γ(B′t′,j/ψt′)
.

Both of the above extend immediately to the case of Sampling Scheme II with Bt defined

appropriately (i.e., with the Y t,a’s subtracted out as on Page 87 in Section 4.2.3).

The derivation of the ratios of joint probabilities when non-penetrant alleles are present

proceeds in similar fashion to the above treatment, but is omitted for brevity.

4.3.2 Proposal distributions for X′ and W′

In the preceding, we saw that it is advantageous to consider changes to pairs of alle-

les at a single time and age for X and a single time for W. Consequently the pro-

posal distribution qX can be a function just of those components, and can be written

qX(X ′t,a,i, X
′
t,a,j |Xt,a,i, Xt,a,j , . . .). Since X ′t,a,i + X ′t,a,j must equal Xt,a,i + Xt,a,j , the pro-

posal distribution is simply a distribution on X ′t,a,i, imposing, for uniqueness of reverse

moves in this sampler, the condition i < j.
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The proposal distribution qX(X ′t,a,i|Xt,a,i, Xt,a,j , · · ·) should reflect a compromise be-

tween statistical efficiency and computational efficiency. From a statistical perspective, it

is most efficient to simulate X ′t,a,i, X
′
t,a,j from their full conditional distribution. However,

not much efficiency is gained this way, and calculating the full conditional distribution in-

curs a heavy computational cost. Instead, I define qX to be a uniform distribution with

width determined by the current values Xt,a,i and Xt,a,j . That is, X ′t,a,i is drawn from a

uniform distribution on the integers (excluding the current value, Xt,a,i) between Xlo and

Xhi, inclusive, where the values of Xlo and Xhi are chosen as a linear function of the approx-

imate standard deviation of Xt,a,i conditional only upon its parents in the graph. Namely

Xlo = Xt,a,i − w and Xhi = Xt,a,i + w where w is the greatest integer less than or equal to

2β
(
L+ α

1 + α
Xt,a,i(1−Xt,a,i/L)

)1/2

(4.31)

where L = Xt,a,i + Xt,a,j , α = L/ϕt,a, and β is a scaling factor that may be adjusted to

achieve a desired acceptance proportion. It can be tuned automatically during run time if

desired. The width of qW may be tuned similarly.

It is also desirable to include some checking in the computer code to ensure that qX does

not give positive probability to any values of X ′t,a,i which would be incompatible with the

descendants of Xt,a,i and Xt,a,j in the graph.

4.3.3 Proposal distributions for λ

To make updates to λ, we consider changes to just one of its components at a time, λa

for the discussion here. A naive, computationally simple proposal distribution for λa is

less desirable than a full conditional update for λa, because the latter allows for a Rao-

Blackwellized (see Section 1.5.3 on Page 19) Monte Carlo estimator of P (λa|Y,Z). This

does require that the parameter space for λ be discretized. This has little effect on the final

inferences one can make if the discretization is fine enough. For example one could choose

to consider n values for λa say, λa,0, λa,1 . . . , λa,n where λa,i = .02 ∗ i. For most situtations,

this will be a fine enough discretization. Writing Λa for the set {λa,0, . . . , λa,n}, and λ′ for
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λ with its ath component set to λ′a, I use for qλ(λ′a) the full conditional distribution

qλ(λ′a| · · ·) = P (λa|Y,Z,X,W) = P (λ′a|X,W) =
P (λ′)Pλ′(X,W)∑

λ′a∈Λa
P (λ′)Pλ′(X,W)

(4.32)

For each update to λa, (4.32) must be computed for all λ′a ∈ Λa. This is computationally

expensive, but that is more than offset by the fact that at the ith update, one is realizing

the values P (λ′a|X(i),W(i)) for each λ′a ∈ Λa with (X(i),W(i)) being simulated from their

posterior distribution given Y and Z. Therefore the successive values P (λ′a|X(i),W(i))

may be averaged over the course of a run of the Markov chain to yield an efficient, Rao-

Blackwellized estimate of P (λa|Y,Z). Furthermore, since qλ(λa) is the full conditional

distribution for λa, the above scheme defines a Gibbs sampling proposal for λa, and the

Hastings ratio Hλ reduces to unity, always.

In empirical tests, this method of updating λ takes more computational time, but yields

far superior estimates of P (λa|Y,Z) than a naive (i.e., uniform) proposal distribution for

each λa in fewer updates of the chain.

4.4 Special Cases

There are some situations in which it might be advantageous or imperative to consider a

model which is simpler and has fewer parameters than the one just described. One obvious

simplification would be to restrict the λa’s of each age group to be equal. This would be

appropriate if data were only available on juveniles, since in that case the different λa’s

would be unidentifiable. It might also be desirable if data are relatively sparse, and/or if

one has prior reason to believe that λa’s would not differ greatly over different age classes.

Similarly, it is possible to restrict W to match perfectly the allele frequencies implied by

X. This corresponds to the assumption that juvenile populations are very large and all of

the population-genetic sampling that is not random with respect to an individual’s family

of origin occurs in the mortality between juvenile and adult stages. While this restriction

would not allow the independent estimate of a λ for juveniles, it would be prudent in the

case when data are available only on adults or only on juveniles. Any non-random (with

respect to family) sampling that occurred before the juvenile stage would then be estimated

as part of the population-genetic sampling from juvenile to adult.
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4.5 Simulated Data

It is always the case that the process of formulating and describing this type of MCMC

method is far simpler and takes less time than the cycle of implementation, testing, and

debugging that is required to produce software to actually carry out the Markov chain

simulations described. I have not yet been able to test all the parts of the current version

of the software implementing the method described in the chapter. However, I am satisfied

that some of its modules are functioning properly, and the results are sufficiently promising

to present the method’s performance on simulated data. For this purpose I have used the

census data in Table 4.1, from the Inmaha Creek chinook salmon population. These data

appear in Beamsderfer et al. (1998), and were kindly provided to me in electronic format

by Robin Waples at the National Marine Fisheries Service. As in Chapter 2, the purpose

of this demonstration is not to assess the bias and variance of the Bayesian estimator for

λ derived in this chapter. Doing so would require a prohibitive amount of computing in

order to average the results over a large number of simulated datasets. Rather, this section

demonstrates that the MCMC method itself is able to provide a good approximation to the

posterior probability for λ given a single dataset.

Inmaha Creek is a tributary of the Snake River in which the chinook salmon population

has declined dramatically in the last four decades. Fish return at ages 3, 4, and 5. The

3-year-olds are almost all small males called “jacks.” Census size estimates, broken down by

age class, are available for the years 1954 to 1999. While jacks certainly contribute some to

future generations, it is unlikely that the contribution, on a per-fish basis, is nearly as great

as that of four and five year-olds. Further, since there are so few of them, and because their

occasional zero census size estimates cause conflicts with the current version of my software,

they were excluded from the dataset.

Genetic data were simulated for a single locus given these census sizes by initializing a

juvenile pool in year 1949 with 5 alleles having counts in the proportions (.4, .2, .2, .1, .1).

Allele counts in the juvenile pool in years 1950 to 1953 were then considered to be W−4 to

W−1 and were drawn according to the urn scheme describing the prior distribution (Sec-

tion 4.2.5) with C̃ being 900. In other words, W−4 to W−1 were simulated by independent,



102

Table 4.1: Estimates of the number of chinook spawners returning to Inmaha Creek (a
tributary on the Snake River drainage) in years 1954 to 1999. Age 3 fish are young males
known as “jacks.” (Data source: Beamsderfer et al. (1998))

Brood Year Age 3 Age 4 Age 5 Brood Year Age 3 Age 4 Age 5

1954 146 507 1079 1977 0 460 230

1955 232 1473 1638 1978 0 87 1914

1956 62 985 619 1979 13 113 124

1957 242 1438 1875 1980 10 87 95

1958 31 508 655 1981 24 214 236

1959 18 231 299 1982 32 279 307

1960 40 655 845 1983 23 206 226

1961 149 341 575 1984 17 219 321

1962 60 678 458 1985 0 363 278

1963 113 207 321 1986 43 214 235

1964 58 684 464 1987 0 139 262

1965 49 385 474 1988 13 92 411

1966 136 385 555 1989 18 85 49

1967 30 666 326 1990 0 70 14

1968 12 450 687 1991 12 36 34

1969 57 843 556 1992 3 58 16

1970 0 350 480 1993 4 81 282

1971 176 1039 529 1994 0 17 34

1972 20 364 1235 1995 3 26 28

1973 0 602 1905 1996 5 130 13

1974 0 590 711 1997 0 95 58

1975 0 139 579 1998 0 39 50

1976 0 306 284 1999 0 0 15
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random draws from an urn containing alleles in the initial frequencies, (.4, .2, .2, .1, .1). The

remaining latent variables X and W were simulated throughout the graph via the urn

scheme described in this chapter, with λ4 = λ5 = 0.4, and using the age-specific fitnesses

of γ4 = 450 and γ5 = 650. These values were obtained by using rough fecundity/length,

length/age, and juvenile survivorship relationships for chinook salmon (both stream- and

ocean-type combined) given in Healey (1991). The latent data were simulated under the

assumption that no genetic drift occurs between the adult and the juvenile stage. Genetic

data were not simulated from 1954 to 1963. However, genetic drift was simulated in the

population during that interval. This allowed the allele frequencies between different years

to settle closer to their joint stationary distribution before starting the simulated sample

collection. Other simulations (Robin Waples, National Marine Fisheries Service, unpub-

lished result) show that 20 years is sufficient to allow the alleles frequencies to “warm-up.”

For the purposes of the present demonstration, ten years should be sufficient.

From 1963 to 1988 I simulated datasets with samples of varying sizes drawn every year

from the same simulated set of latent variables. The three different sample sizes considered

were:

1. S4 = S5 = 10 and R = 30

2. S4 = S5 = 25 and R = 60

3. S4 = S5 = 60 and R = 125

In years when the sample size would have been larger than one half the census size of the

population of a particular age (4 or 5), the sample size for that age group was decreased to

be one half of the census size of the population. Data were not simulated and used for the

last eleven years (1989–1999) of the census data because the small population sizes in those

years meant that even with very small samples from the adult populations, a good estimate

of λ was possible, and I wanted a more challenging scenario for demonstrating the method.

The simulated data were analyzed under the assumption that λ4 = λ5 (which shall

hereafter be referred to as λ) and that no drift occurs in the transmission of genes to the
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juvenile stages; hence W t is completely determined by (Xt,a− , . . . ,Xt,a+). λ values in the

set {.02, .04, . . . , .98} were considered. To reduce burn-in time, X was initialized to the

value that was realized in the original simulation. I have subsequently verified that the

burn-in time required for other reasonable starting configurations (like all allele frequencies

of X initialized to the average frequency of the alleles observed in the samples) is short. A

sweep of the algorithm consisted of:

1. E updates in series, first with a random pair (Xt,a,i, Xt,a,j) between the years 1963

and 1988 and then with a random pair (Wt,i,Wt,j) from the juvenile pools used to

construct the prior distribution in the years 1958 to 1962.

2. An update of λ.

E was chosen so that each component of X was updated twice on average during a sweep. For

the different scenarios I simulated, I performed 70,000 sweeps of the algorithm. Inspection

of the estimated posterior for λ suggests that the estimate changed imperceptibly over the

last 50,000 sweeps of the algorithm. 70,000 sweeps required 2 hours on a laptop computer

with a 266 Mhz G3 (Macintosh) processor.

At each of the different sampling intensities I analyzed the data under the assumption

that all the samples were available (Figure 4.5), and also under the assumption that only

the adult samples were available (Figure 4.6(a)). I also did one simulation in which samples

from the adults were not available, but samples of size R = 125 from juveniles at all

years were available (Figure 4.6(b)). For comparison, I have plotted each of these posterior

distributions next to the posterior distribution that one would obtain if X and W were

known without error.

The results, as shown in Figures 4.5 and 4.6, suggest that the MCMC sampler is function-

ing appropriately and computing the posterior distribution for λ. The curvature generally

decreases with sample size, reflecting the loss of information, as it should.2 Furthermore,

2The posterior distribution for sample sizes S = 25, R = 60, being more peaked than the posterior
distribution for S = 60, R = 125, is an exception to the trend. This results from the fact that for the
particular set of data simulated for S = 25, R = 60, the estimated λ happens to be smaller than for the
data simulated with S = 60, R = 125. The credible set will be smaller for a lower estimated value of λ
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Figure 4.5: Plot of the posterior probabilities for λ = λ4 = λ5 from genetic data simulated
on the Inmaha Creek chinook population (Table 4.1), when data were available on both
adults and juveniles. The first line in the graph corresponds to the estimate with the latent
variables known without error. The other three lines correspond to the different sample
sizes of adults and juveniles. The true λ4 = λ5 = 0.4.
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(a) Samples taken only from adults
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(b) Samples taken only from juveniles

Figure 4.6: Graphs as described in Figure 4.5, but under different sampling scenarios. (a)
Juvenile sample sizes all zero, and adult sample sizes as shown. (b) Adult sample sizes not
all zero, but samples of 125 taken each year from the juveniles.
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in all cases except one, the 90 percent credible interval for λ overlaps the true value of

0.4. While the narrowest posterior distributions occur with samples from both adults and

juveniles, there still seems to be a substantial signal in the data, even when samples are

taken either only from adults or only from juveniles.

4.6 Discussion

These results are encouraging. They demonstrate that the MCMC sampler devised here

is able to compute the posterior probability distribution for λ, suggesting that the method

presented in this chapter permits use of data over multiple years from a salmon population

with known census sizes to estimate the ratio λ with good precision. It should be kept in

mind that these simulations exploit the data from only a single locus with five alleles. Nar-

rower credible sets would be obtained with data on multiple loci. The posterior distribution

for λ given data on multiple, independently segregating loci is proportional to the product

of the posterior probabilities for λ from each of the loci treated separately, as described

here. Therefore, the extension to multiple loci is simple.

The method developed herein would be particularly appropriate for estimating λ in

hatchery populations of salmon where the census sizes of spawning adults are well known. As

in the previous chapter, the method thus far developed in the current chapter assumes that

λ remains constant over time. Future work is required to assess how robust this estimate

is to departures from the underlying model. However, like the method of Chapter 3, it

would also be possible here to propose new models in which λ varied over time, and to

compare those models within a Bayesian framework using reversible jump MCMC (Green

1995). Such a method would be well-suited to using genetic data to detect the impact of

supportive breeding programs (Ryman and Laikre 1991; Hansen et al. 2000) on λ in

salmon populations.

because, when λ is smaller, then the amount of genetic drift expected will be larger, relative to the amount
of error due to random sampling of genes. In other simulations (not shown) in which the maximum a
posteriori estimate of λ for the simulated data with S = 25, R = 60 was closer to that for the simulated
data with S = 60, R = 125, the credible set is wider for the dataset with smaller samples.


