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Abstract

Monte Carlo Methods for Inference in

Population Genetic Models

by Eric C. Anderson

Chair of Supervisory Committee

Professor Elizabeth A. Thompson
Department of Statistics

This dissertation describes novel applications of Monte Carlo and Markov chain Monte

Carlo (MCMC) techniques to statistical inference in problems from the field of conserva-

tion genetics. The inference problems are motivated by issues arising in the conservation

and management of trout and salmon. The first half of the thesis deals with estimating

effective population size and related quantities from temporally spaced samples of genetic

data. A likelihood function for organisms with discrete generations is developed, based

on the Wright-Fisher model and a hidden Markov chain formulation. Importance sam-

pling methods for computing this likelihood are presented and applied to published data on

Drosophila. Some modeling assumptions implicit in the use of the Wright-Fisher model are

detailed, and a new model for genetic inheritance, based on a Pólya urn scheme, is presented

and characterized. Methods are developed using this model for the MCMC estimation of

the likelihood or posterior probability for the effective size of a population or for the ratio

λ of the per-generation number of effective breeders to census breeders in a population.

The Pólya urn model forms the basis for a probability model of allele frequency change

conditional on λ in salmon populations. Specifying this model in terms of a large directed

graph simplifies the application of a single-component Metropolis-Hastings algorithm for

computing the posterior distribution of λ. The method is applied to genetic data simulated





upon the census counts of a threatened salmon population in Idaho, demonstrating that the

method allows precise estimates of λ with such data.

The second half of the thesis focuses on approaches to inference within populations of

recently-hybridized populations. First, I extend the methods of Pritchard et al. (2000)

to allow inference of pure and admixed categories of individuals in structured populations.

Finally, I develop methods based on explicit modeling of recent hybridization and evaluate

the potential for using genetic data to distinguish F1, F2 and backcrossed hybrid categories

among sympatric, hybridizing populations.
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Chapter 3: λ and a Pólya Urn Model for Genetic Inheritance 47

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Estimating the Ratio of Effective to Census Population Size . . . . . . . . . . 48

3.2.1 MCMC likelihood for λ . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2 A Bayesian approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Shortcomings of the Wright-Fisher model in this case . . . . . . . . . 50

3.3 The Urn Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Other Interpretations of the Urn Model . . . . . . . . . . . . . . . . . . . . . 55

3.5 Comparison to the Wright-Fisher Model . . . . . . . . . . . . . . . . . . . . . 57

3.5.1 Offspring number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.2 Identity by descent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5.3 Allele frequency variance . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Probability of allele fixation in one generation . . . . . . . . . . . . . . 61

3.5.5 Comparable λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.6 Allele Fixation in Population-Genetic Models . . . . . . . . . . . . . . . . . . 63

3.7 MCMC for Bayesian Estimation Under this Urn Model . . . . . . . . . . . . 66

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8.1 Constancy of λ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.8.2 How do we define census sizes? . . . . . . . . . . . . . . . . . . . . . . 71

3.8.3 Census sizes estimated with error . . . . . . . . . . . . . . . . . . . . . 72

ii



Chapter 4: λ and Overlapping Generations 74

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.2 Overlapping Generations via an Urn Model . . . . . . . . . . . . . . . . . . . 76

4.2.1 Dependence structure with the Pacific salmon life history . . . . . . . 76

4.2.2 Dependence structure under Sampling Scheme II and with null alleles 80

4.2.3 Specifying probability distributions . . . . . . . . . . . . . . . . . . . . 84

4.2.4 Probabilities with recessive alleles . . . . . . . . . . . . . . . . . . . . 88

4.2.5 The prior distribution for allele counts . . . . . . . . . . . . . . . . . . 90

4.3 A Bayesian Formulation and MCMC Simulation from P (λ|X,W) . . . . . . 93

4.3.1 Neighborhood structures and joint probability ratios . . . . . . . . . . 95

4.3.2 Proposal distributions for X′ and W′ . . . . . . . . . . . . . . . . . . 98

4.3.3 Proposal distributions for λ . . . . . . . . . . . . . . . . . . . . . . . . 99

4.4 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.5 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

Chapter 5: Bayesian Inference in Mixed and Admixed Populations 108

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.2 Genetic Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 A Model with Admixed Individuals . . . . . . . . . . . . . . . . . . . . . . . . 113

5.3.1 Block-updating W i when J = 2 . . . . . . . . . . . . . . . . . . . . . 115

5.4 A Model for Simultaneous Population Mixture and Admixture . . . . . . . . 118

5.5 Metropolis Updates for α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.6 Data and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.6.1 Results for model MP,A . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.2 Comparison of results for models MP,A and MA . . . . . . . . . . . . . 124

5.7 Bayesian Model Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.7.1 Reversible Jump MCMC for Model Comparison . . . . . . . . . . . . 127

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

iii



Chapter 6: Explicit Modeling of the Hybridization Process 136

6.1 Population and Probability Model . . . . . . . . . . . . . . . . . . . . . . . . 137

6.1.1 Hybrid categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1.2 Probability of the data . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 A Bayesian Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.3 MCMC Simulation from the Posterior Distribution . . . . . . . . . . . . . . . 146

6.4 Steelhead × Cutthroat Trout Hybrids in Whiskey Creek . . . . . . . . . . . . 148

6.4.1 Four analyses for demonstration . . . . . . . . . . . . . . . . . . . . . 149

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

Chapter 7: Conclusions 162

Bibliography 165

Appendix A: Monte Carlo Variance of a Product 180

Appendix B: Overlapping Generations via Importance Sampling with the

Multivariate Normal Distribution 184

B.1 Introduction to the Problem and Notation . . . . . . . . . . . . . . . . . . . . 184

B.2 The Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

B.3 Constructing Qλ(X) so it is close to Pλ(X|Y) . . . . . . . . . . . . . . . . . . 186

B.4 Simulated Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

iv



LIST OF FIGURES

2.1 Directed graph of Markov structure in a Wright-Fisher population . . . . . . 24

2.2 Reflections and translations ofM and Q . . . . . . . . . . . . . . . . . . . . . 36

2.3 Log-likelihood curves from simulated data . . . . . . . . . . . . . . . . . . . . 41

2.4 Log-likelihood curve from the data of Begon et al. (1980) . . . . . . . . . . . 42

3.1 Comparison of one-generation fixation probabilities . . . . . . . . . . . . . . . 62

3.2 Fixation probabilites in a two-stage model with PH ∼ Bernoulli . . . . . . . . 65

3.3 Log-likelihood curve for Ne using the urn model . . . . . . . . . . . . . . . . . 68

4.1 Dependence structure with overlapping generations . . . . . . . . . . . . . . . 79

4.2 Dependence structure under Sampling Plan II . . . . . . . . . . . . . . . . . . 81

4.3 Dependence structure with null alleles . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Neighborhoods for the allele count amongst the juveniles and adults . . . . . 96

4.5 Posterior distributions for λ with samples from all groups available . . . . . . 105

4.6 Posterior distributions for λ under different sampling scenarios . . . . . . . . 106

5.1 Undirected graph showing the dependence between W i, D, and Y i . . . . . 117

5.2 Aggregate-level parameters for the Scottish cat dataset . . . . . . . . . . . . . 123

5.3 P (Vi = P) versus P (Zi = “F . sylvestris”|Vi = P) for the Scottish cat data . . 124

5.4 Posterior densities for α from the Scottish cat data . . . . . . . . . . . . . . . 125

5.5 Proportion of alleles allocated to the housecat subpopulation . . . . . . . . . 125

5.6 Proposal densities for reversible-jump moves . . . . . . . . . . . . . . . . . . . 129

5.7 Values of logA under MA and MP,A . . . . . . . . . . . . . . . . . . . . . . . 130

5.8 Traces of estimated posterior log-odds, log[P (MP,A|y)/P (MA|y)] . . . . . . . 131

v



6.1 Hybrid classes with n = 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Pedigrees of the F2 and F3 hybrid classes with n = 3 . . . . . . . . . . . . . . 142

6.3 Results from analysis 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

6.4 Results from analysis 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.5 Probability of pure descent of fish in analysis 3 . . . . . . . . . . . . . . . . . 156

6.6 Posterior probabilities of genotype frequency class for simulated hybrids . . . 157

6.7 Posterior probabilities for hybrids with 12 very informative markers . . . . . 159

B.1 Directed graph from a population with adults of two age classes . . . . . . . . 186

B.2 Contour plot of likelihood surface approximated by importance sampling . . . 194

vi



LIST OF TABLES

4.1 Census sizes of Inmaha Creek chinook salmon . . . . . . . . . . . . . . . . . . 102

6.1 Genotype frequency classes assumed for the analyses . . . . . . . . . . . . . . 150

vii



ACKNOWLEDGMENTS

I owe thanks to a great many people who helped me in the preparation of this disserta-

tion. I must first acknowledge the support, encouragement and criticism of my supervisory

committee, starting with the mentoring given me by my committee chair, Elizabeth Thomp-

son. I will be forever grateful that Elizabeth was willing to take me on as a student five

years ago, despite my relative lack, at the time, of formal, college, mathematical training.

In addition to profiting from Elizabeth’s habit of being always available to her students, I

also benefited tremendously from her mentoring style, knowledge of statistical genetics, and

innate curiosity of statistical and genetic matters of all variety. I also owe special thanks to

Joe Felsenstein. Were it not for his generosity in offering me an independent study in pop-

ulation genetics six years ago, I would never have found my way to this field that I find so

rewarding. Robin Waples has been helpful throughout the dissertation process. In the early

stages he suggested fruitful lines of research, in the middle stages he kindly provided me

with useful datasets, and in the final stages he contributed many insightful comments and

criticisms of the work in these pages. I met Matthew Stephens while he was a postdoctoral

researcher at the University of Oxford. My visit to Oxford in October of 1999 inspired two

of the chapters in this dissertation. Matthew, who has provided a great amount of technical

help, is also an inspiring statistician to me, as well as a valued friend. Finally, Richard

Fenske has been a model Graduate-School Representative. He was flexible in scheduling

meetings, and it was a pleasure to get to know him during my years at the University.

I thank the QERM program for its sturdy and resilient existence through some of the

trying times in the last four years. I have enjoyed the contact I have had with fellow

QERM students. I particularly acknowledge my discussions with David Caccia on stochastic

processes, Markov chain Monte Carlo, and perfect sampling methods, and I give thanks for

the typically animated comments that Professor David Ford always had for me and others

viii



when presenting at the QERM seminar series.

Elizabeth Thompson’s students and postdocs in Statistics and Biostatistics were an in-

valuable resource for me, and I particularly thank Nicky Chapman (with whom I shared

dissertation-completion-neurosis during spring quarter) and my esteemed office mate, An-

drew George. I have had the pleasure of occupying an office in the Department of Statistics

for the last three years. My exposure to the distinguished faculty and the dedicated students

there was a wonderful experience. The Department never ceases to impress me, and I am

honored to have been a part of it.

I regularly attended several seminar groups that enriched and broadened my experience

at the University. I particularly thank the MathBio Czar, Professor Thomas Daniel in the

Department of Zoology and Professors Garry Odell and Elizabeth Thompson for organizing

and orchestrating the Mathematical Biology seminar in Zoology. I have also enjoyed the

long-runnning Statistical Genetics seminar group in Statistics and Biostatistics, and, in my

last year here, have had the pleasure of attending Adrian Raftery’s Model-Based Clustering

Working Group in Statistics.

I thank my collaborators on talks and papers in the last four years. I collaborated with

Ellen Williamson at University of California, Berkeley on a paper that formed the material

for Chapter 2 of this dissertation. In connection with that collaboration, I acknowledge

the hospitality of Montgomery Slatkin and his lab group during my visits to Berkeley.

Jonathan Pritchard was a collaborator for a talk I presented at the International Biometrics

Conference in 2000. This work, which eventually grew into Chapter 5, started from several

conversations during a brief visit to University of Oxford, where I was hosted by the lab of

Peter Donnelly in the Department of Statistics. Most recently I have had the pleasure of

teaming up with Paul Scheet for a short article in Genetics. Mark Beaumont and David

Teel provided datasets that I use in Chapters 5 and 6.

During my years working on this dissertation I have been supported by National Science

Foundation grant BIR–9807747 to Elizabeth Thompson, the National Science Foundation

Mathematical Biology Training Grant #BIR–9256532 to Thomas Daniel and Garry Odell,

ix



the Burroughs Wellcome Fund, Program in Mathematics and Molecular Biology, and a

QERM Student Training Grant.

While in Seattle, outside the academic sphere, I have received support from a network

of friends too numerous to thank individually. Through it all, always, I thank my mother,

father, and sister for their unflagging love and support.

Finally, as my undergraduate training was in biology, with few mathematics courses, I

have had to rely on the math background I gained as a high school student. The Math-

ematics Department at The Thacher School, and particularly Kurt Meyer, deserve spe-

cial recognition. And I thank my dear friend and mentor of math and mountains, John

Rosendahl.

x



1

Chapter 1

INTRODUCTION

The last two decades have witnessed remarkable advances in the fields of biotechnol-

ogy and computation. As a result, biologists who study or manage natural populations of

plants and animals today have access to numerous new tools. Of great value are techniques

for assaying genetic variability within individuals, and within populations. With the ad-

vent of polymerase chain reaction (PCR) and the discovery of new, polymorphic, genetic

markers, a number of questions about populations and the interactions of the individuals

within them may be addressed using genetic data. The advances in computation have been

equally significant. Today’s computers are fast enough to allow numerically intensive sta-

tistical analyses to be run on desktop machines. This has led to significant development

in the field of computational statistics, particularly in the use of Monte Carlo and Markov

chain Monte Carlo (MCMC) techniques for computing likelihoods and posterior probabil-

ities. This dissertation focuses on developing likelihood-based statistical procedures and

the computational methods necessary to apply them to the analysis of genetic data in the

context of questions of interest to biologists, conservation biologists and wildlife managers.

Each of Chapters 2 through 6 provides an almost self-contained account of the applica-

tion of statistical theory and computational techniques to a practical problem in population

genetics. Chapter 2 describes a hidden Markov model and an importance-sampling method

for evaluating the likelihood for the parameter Ne—the genetically effective size—of a pop-

ulation from temporally-spaced genetic data. Chapter 3 considers the direct estimation of

the ratio of the effective number of breeders to the census number of breeders; a parameter

we call λ. This chapter describes problems with modeling genetic transmission in popula-

tions via the well-known Wright-Fisher model, and advances, instead, a model of genetic
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inheritance derived from a Pólya urn scheme. Using a hidden Markov model with transi-

tions based on this urn scheme, the final section of the chapter describes an MCMC method

for computing the likelihood or posterior distribution for λ or Ne. Chapter 4 uses the urn

scheme of the previous chapter to develop a likelihood model for λ in the case of salmon

populations which, because of their interesting life histories, violate the discrete genera-

tion assumption of the standard Wright-Fisher model. This likelihood is used for Bayesian

inference of λ in salmon populations. Once again, this relies on MCMC.

Chapters 5 and 6 deal with a different problem in population genetics—that of identifying

the origin of individuals in mixed and admixed (i.e., including some hybrid individuals)

populations. Chapter 5 describes an extension to the work of Pritchard et al. (2000)

allowing individuals in an admixed population to be of either pure or admixed genetic origin

and uses an example with data from wildcats (Felis sylvestris) in Scotland. Chapter 6

develops a model for admixture that is more appropriate when hybrids have only been

formed over a small number of generations. This method uses genetic data to compute

the posterior probability that an individual in a sample is, for example, a pure individual,

an F1 or F2 hybrid, or a backcross. The method is demonstrated on data from coastal

cutthroat trout (Oncorhynchus clarki), steelhead trout (O. mykiss), and their hybrids. The

final chapter, 7, includes brief concluding remarks and describes further work to be done in

the areas treated by this dissertation.

This leaves the present chapter to briefly summarize how and why the main chapters

of this dissertation are related and connected. I see three levels of connection. First,

each practical application described confronts a problem in the study and management

of natural (non-human) populations using genetic data that are increasingly available. In

my case, each of these applications has been motivated by a particular problem which

occurs in the study of salmon populations. Second, each chapter makes heavy use of Monte

Carlo computational techniques. While Monte Carlo likelihood and MCMC have been

used since the early nineties in genetic problems involving computations on pedigrees, and

soon thereafter were applied to inference on evolutionary time scales, their application

to population genetics problems has been more recent, and the chapters herein represent

some of the first applications of MCMC to genetic inference at the population level. The
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third point is more of a statistical curio than a unifying theme, but I find it interesting

nonetheless—despite the fact that the problems addressed in Chapters 5 and 6 are quite

different from those in Chapters 2 through 4, we encounter in all of them useful applications

of hidden Markov models, mixture models, and urn models. In the remaining sections of

this chapter, I will elaborate on the first two points, and for those unfamiliar with them, I

provide a brief introduction to Monte Carlo techniques.

1.1 Genetic Data

Advances in biotechnology have revolutionized conservation biology and resource manage-

ment. Avise et al. (1995) review the genetic markers currently available to researchers,

discuss the types of analyses those markers allow, and review applications in conservation

genetics. The advent of Mendelian-inherited microsatellite markers (Tautz 1989; Wright

and Bentzen 1994) has made informative genetic data increasingly available and inexpen-

sive for such applications. Among other examples, DNA markers amplified from fin clips

have been used in monitoring Pacific salmon (Olsen et al. 1996), while hair samples have

been used in studying bear (Taberlet et al. 1997), and chimpanzee (Morin et al. 1993)

populations. PCR-based technologies are especially appropriate for populations of conser-

vation interest as sampling is non-destructive and/or non-invasive. It is thus possible to

obtain data at multiple time points, and, since the markers are typically polymorphic, the

data are informative in characterizing the population at each time point, and hence also in

detecting and quantifying the gene frequency changes caused by small effective population

size or genetic exchange with other populations.

With microsatellite markers and PCR, data may be extracted from archived tissues,

giving the opportunity to obtain data from time points in a population’s past. For example,

museum-preserved skins from known populations of the pocket gopher provide genetic data

on the populations at two time points (1950’s, 1970’s) which may be compared to current

samples (Ellie Steinberg, UW Dept. of Zoology, pers. comm.). For some fish populations,

the situation is even better. Some such populations have been the subject of long-term

ecological research efforts with population size estimates available on a yearly basis, and
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age composition inferred from fish scales. Genetic marker data may be obtained from these

archived scales. Recently, Miller and Kapuscinski (1997) isolated DNA from northen

pike scales collected from Lake Escanaba, WI. Using data from three years, 1961, ‘77, and

‘93, they estimated Ne from the temporal changes in allele frequencies over the two time

intervals. In a similar, ongoing study, microsatellites from archived juvenile Keogh River

(Vancouver Island) and Snow Creek (Washington State) steelhead scales provided ample

material for amplifying microsatellite markers by PCR (Ardren 1999). The use of archived

fish tissues for population genetic studies is further described by Nielsen et al. (1999).

1.2 Salmon Populations and Genetics

Pacific salmon (Oncorhynchus spp.) and their relatives, Atlantic salmon and the true trouts

(Salmo spp.) and chars (Salvelinus spp.) in the family Salmonidae are an evolutionarily

fascinating and commercially valuable group of fish. Both of these factors have contributed

to the generation of an enormous amount of genetic data on these species. The five species

of Pacific salmon native to the West Coast of North America, sockeye (O. nerka), chinook

(O. tshawytscha), coho (O. kisutch), chum (O. keta), and pink (O. gorbuscha) exhibit an

anadromous and semelparous life history; they hatch from eggs in fresh water, migrate to the

ocean and mature to adulthood, then return to their natal fresh waters to spawn, and then

die soon thereafter. A remarkable feature of these migrations is the salmon’s homing ability.

Returning adults typically spawn in the stream in which they were born. While this homing

behavior is not always perfect, and straying (spawning in a non-natal stream) is known to

occur, their homing does lead to a situation in which salmon populations represent relatively

isolated, reproducing populations with low gene flow between populations. A comprehensive

review of life histories in Pacific salmon may be found in the volume edited by Groot and

Margolis (1991).

Atlantic salmon (Salmo salar), steelhead trout (O. mykiss), and coastal cutthroat trout

(O. clarki) display anadromous forms and homing ability; however, they do not necessarily

die after spawning. O. mykiss and O. clarki also exhibit non-anadromous or resident forms.

Many of the chars (Salvelinus spp.) also exhibit resident and anadromous forms. There
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has been considerably less research on chars than on Pacific salmon and the true trouts,

but there is still considerable genetic information about them (see Leary and Allendorf

(1997) and Taylor et al. (2001) and references therein).

Commercial fishing for Pacific salmon is a mammoth industry on the West Coast. Sport

fishing is also economically important to the region. These influences have had a siginficant

impact on salmon population abundnace. Additionally, the nature of their life history

makes salmon vulnerable to a number of different anthropogenic disturbances that affect the

environments in which they live and through which they migrate. For example, hydropower

operations, forestry, agriculture, road-building, and wetlands destruction all impact salmon

at some some point in their life history. In response to dwindling population sizes and

the wholesale destruction of spawning habitat for hydroelectric power generation, a great

number of salmon hatcheries have been built to try to maintain or supplement salmon

production on the West Coast. In recent years the aquaculture practice of net-pen rearing

of Atlantic salmon on both coasts has increased dramatically. Hatchery and aquaculture

practices have brought with them their own suite of impacts on wild salmon populations.

In the lower 48 states of the United States, in particular, but also in Canada and Alaska,

all of these impacts have resulted in extinction or crisis for a significant number of salmon

populations (Nehlsen et al. 1991).

The use of genetic markers in the management of salmonid stocks has a long and ex-

tensive history (Ryman and Utter 1987). More recently, with the application of the

Endangered Species Act to populations of Pacific salmon, genetic characteristics of popula-

tions along with other traits are used in delineating the “Evolutionarily Significant Units”

to which the Act is applied (Waples 1995). Consequently, there is a vast literature on

salmon genetics and the use of genetic markers in the conservation of salmon. My purpose

in the remainder of this section is not to attempt a comprehensive review of that literature

(such reviews and case studies may be found in Allendorf and Waples (1996) and the

articles co-published with Utter (1999)) but rather to first give the reader some sense of

the varieties of genetic data on salmon and then to highlight the uses of those data that are

particularly relevant to this dissertation.

The first, and still the most widely-used, genetic markers for salmon are electrophoret-
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ically detectable enzymes described and reviewed by Utter et al. (1987). Today there

are well over 60 commonly-used allozyme loci routinely used by the National Marine Fish-

eries Service in screening salmon populations for genetic variation and for other purposes.

However, many newer, molecular markers have been discovered and used in salmon as well.

Gyllenstein and Wilson (1987) describe mitochondrial DNA (mtDNA) markers in the

era before PCR. Also in the pre-PCR era, various probes were developed for hybridization

to restriction-enzyme-digested total genomic DNA of salmon (Devlin et al. 1991). With

the ability to amplify DNA by PCR, mtDNA markers were more easily prepared and other,

new types markers became available. First were markers that were associated with known,

functional genes like those coding for ribosomal DNA (Pendas et al. 1995) or growth hor-

mone (Gross and Nilsson 1995). Soon thereafter, however, probes detected minisatellite

loci in all salmon species (Prodohl et al. 1995), and the method of Random Amplification

of Polymorphic DNA (RAPD) was applied to salmon (Elo et al. 1997). Today, microsatel-

lite markers (Olsen et al. 1996) are widely available for salmon. Research into new markers

for salmon continues, with the discovery of new short interspersed repeat (SINE) segments

being a recent example (Perez et al. 1999).

Genetic markers have been used in at least several hundreds of studies of salmon popu-

lations. Some of these concern themselves primarily with reporting genetic variation across

and within populations; however, many of them are directed toward answering specific

questions or estimating particular quantities associated with the populations. Of particular

relevance to this dissertation are studies involving genetic stock identification, the estima-

tion of effective population size, and the detection of hybrids. In later chapters, I present

novel computational methods for each these tasks.

Genetic stock identification refers to the use of multilocus genotypes (without knowl-

edge of phase) to assign individuals sampled from a mixture of fish to one of the populations

contributing to the mixture, and also to estimate the proportion of fish in the mixture from

each of the source populations. The empirical studies employing these techniques are too

numerous to list; however, Wood et al. (1989) is a representative example using allozymes

and other biological trait data, Beacham (1996) describes genetic stock identification using

minisatellites and Beacham et al. (2000) and Olsen et al. (2000) both provide represen-
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tative cases using microsatellite markers.

Interestingly, the availability in the early 1980’s of allozyme data from salmon popula-

tions and problems in salmon population management were the primary factors motivating

the original development of statistical methodologies for these sorts of genetic mixtures.

Milner et al. (1981) present the basic framework and an EM-algorithm for maximum like-

lihood methods in genetic stock identification conditional on allele frequencies being known

from the populations contributing to the mixture. Millar (1987) analyzes conditions of

identifiability and shows that another method known as the “classification” method is a

special case of the the likelihood approach. Smouse et al. (1990) present an EM-algorithm

for inference in the case when the allele frequencies from the contributing stocks is not as-

sumed known without error, and Pella and Masuda (2001) give a Bayesian version using

MCMC to simulate from the posterior distributions of interest.

The estimation of effective size of salmon populations is another problem that has spurred

the development and refinement of statistical methods. The work of Waples (1989), clar-

ifying and generalizing previously developed F -statistic methods for estimating effective

population size from temporal changes in allele frequencies, was motivated in large part

by problems in salmon biology. In a series of papers, he explores genetic change over time

(Waples and Teel 1990; Waples 1990a) in salmon populations and tailors an F -statistic

method for estimating effective size to the Pacific salmon life history (Waples 1990b). This

method was later made more practical by an algorithm presented in Tajima (1992). These

methods have been used to estimate the effective sizes of endangered salmon populations

(Waples et al. 1993). Estimation of brown trout (Salmo trutta) effective sizes (Jorde and

Ryman 1996) motivated the development of another method for applying F -statistic esti-

mators to temporal allele frequency data for the estimation of effective size in populations

with overlapping generations (Jorde and Ryman 1996).

A number of empirical studies have been conducted, estimating the effective size or the

effective number of spawners in salmon populations. Ardren (1999) uses microsatellites

amplified from fish scales to try to estimate the effective size of two West Coast steelhead

populations. Kincaid (1995) analyzes mating patterns and breeding history to try to

estimate inbreeding effective size in hatchery populations of salmonids. Hedrick et al.
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(1995) discuss and estimate the effective size of winter run chinook salmon. Tessier et al.

(1997), using microsatellite and mtDNA markers, assess the effective population size of

landlocked Atlantic salmon populations and the effect that supportive breeding programs

have on the effective size of these populations.

The literature on the use of genetic methods for detecting hybrids between salmonid

species is enormous and will not be exhaustively reviewed here. The studies using genetic

markers include those that investigate naturally-occurring hybridization between sympatric

species (cf. Campton and Utter 1985; Taylor et al. 2001; Elo et al. 1995) and numerous

ones involving interbreeding between hatchery or farm-reared salmon and native populations

of conspecifics (for example, Clifford et al. 1998) or other species (Jansson and Oest

1997).

1.3 Monte Carlo in Genetics

Many inference problems in statistical genetics involve complex stochastic models that in-

clude a great number of variables. Typically only a fraction of these variables can be

directly observed. These variables summarize the observed genetic data. The remainder

of the variables in the stochastic model are not directly observable and are referred to as

latent variables. The likelihood function for such inference problems can be expressed as

the sum over the latent variables of the joint probability of the observed data and the latent

variables, conditional on the genetic parameters of interest. Often, however, the space of

latent variables is huge and that sum is not directly computable.

Monte Carlo methods are stochastic integration techniques that are useful for approx-

imating such intractable sums. I provide a brief introduction to Monte Carlo methods in

Section 1.5, after establishing conventions for mathematical notation. Here I briefly review

the recent history of Monte Carlo techniques, and, in particular, Markov chain Monte Carlo

(MCMC) techniques in statistical genetics.

Four years ago, as I was starting the research reported in this dissertation, MCMC

methods had been used extensively in the analysis of data on extended or complex pedigrees.

In segregation and linkage analysis of trait and genetic marker data observed on members
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of a known pedigree, MCMC is used to sample over the space of latent variables which may

be defined as genotypes (Guo and Thompson 1992) or meiosis indicators (Thompson

1994) or both (Lange and Matthysse 1989). Much work had been done in this field to

improve the mixing of chains in the space of latent variables. One example in the area of

inference of ancestral types on a large complex pedigree structure is the simulated tempering

method of (Geyer and Thompson 1995). To improve mixing and ensure irreducibility,

methods were developed in which multiple components of the latent variables are updated

simultaneously. In pedigree analysis, such methods include use of a block-updating Gibbs

sampler (Janss et al. 1995), a whole-meiosis Gibbs sampler (Thompson and Heath 1999),

and a whole-locus Gibbs sampler (Kong 1991). Brand new MCMC methods, at the time,

like reversible-jump MCMC (Green 1995) were quickly adopted to analyze more complex

model spaces in genetic analysis. Heath (1997) applies reversible jump methods to detect

and locate multiple quantitative trait loci (QTL) from trait and genome-scan data, where

the number of QTL is not prespecified and thus the dimension of the model varies within a

single MCMC run.

MCMC methods had also been used in analyses of inference of relationship among in-

dividuals from genetic data. Painter (1997) develops methods for estimation of sibship

structure, sampling directly over the space of alternative sibship structures, using data on

microsatellite markers. Geyer et al. (1993) use a Metropolis-Hastings MCMC method to

construct a Monte Carlo likelihood function for relationship parameters among a group of

individual California condors, on whom there are multilocus DNA fingerprint data. At the

other extreme of the evolutionary time scale, MCMC methods had also been used in phylo-

genetic analyses, to estimate evolutionary parameters, such as the product of mutation rate

and effective size (Kuhner et al. 1995), or the rate of increase of populations (Kuhner

et al. 1997). In these analyses, the latent variable is the structure and inter-coalescence

times of the ancestral coalescent (Kingman 1982) of a sample of DNA sequences, and is

sampled using a Metropolis-Hastings algorithm. Newton et al. (1997) propose an alterna-

tive specification of the coalescent structure, leading to an MCMC sampler which can make

large changes in ancestral topology in a single MCMC step. In some cases, this specification

may provide a better mixing sampler. Other Monte Carlo likelihood methods had also been
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used for coalescent models in the context of estimation of growth rates (Griffiths and

Tavaré 1994) and recombination rates (Griffiths and Marjoram 1996), and inference

of mutation models (Nielsen 1997).

Since that time, the use of MCMC methods in statistical genetics has grown dramat-

ically, due in large part to the growing acceptance of Bayesian techniques and the close

association between Bayesian computation and MCMC. Stephens (2001) reviews recent

MCMC and importance sampling methods for likelihood and Bayesian inference using co-

alescent models, and the numerous new MCMC approaches for inference of phylogenies

are reviewed by Huelsenbeck and Bollback (2001). MCMC methods have also enjoyed

further refinements and applications in the detection of quantitative trait loci from data

on outbred pedigrees (Hoeschele 2001) and in the inference of breeding values in animal

breeding (Gianola 2001).

While MCMC methods have been used on pedigrees and on coalescents for some time,

only recently have they been used in conservation genetics problems at the intervening pop-

ulation time-scale where a pedigree structure is not available and the data, either observed

or latent, are allele frequencies in specified populations. The methods developed in this the-

sis are applications of MCMC to problems relevant in conservation genetics. Other Monte

Carlo approaches relevant to conservation genetics on short time scales have been developed

in the last several years and include the detection and characterization of recent bottlenecks

using genetic data (Beaumont 1999), the estimation of effective population size (Kitada

et al. 2000), the analysis of population structure and admixture (Pritchard et al. 2000),

and genetic stock identification in fisheries management (Pella and Masuda 2001).

1.4 Notational Conventions

Statistical genetics is rich with complex data arrangements and, therefore, multiply sub-

scripted variables. To avoid confusion, I adopt the following conventions for mathematical

notation, and apply them throughout the chapters of the dissertation: scalar random vari-

ables are either uppercase, italicized, Roman letters or lowercase Greek letters; for example

X or θ. Greek letters are also used for quantities considered to be parameters in a frequentist
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setting. For the Roman letters, vector-valued random variables are written in slant-bold,

with their components being written as scalars with a single subscript: X = (X1, . . . , Xn).

Random variables which are collections of vectors are denoted by Roman bold, X, with the

ith vector element within it denoted by Xi and scalar components by double subscripts sep-

arated by a comma, i.e., X = (X1, . . . ,Xm) with Xi = (Xi,1, . . . , Xi,n). Some collections

of vectors require more than one subscript to denote each vector. These are still denoted

by Roman bold characters with the obvious extensions; for example X = (X1, . . . ,Xk),

Xt = (Xt,1, . . . ,Xt,m), and Xt,j = (Xt,j,1, . . . , Xt,j,n). The shading and subscripting con-

ventions for Greek letter random variables or parameters are similar, with uppercase bold

substituted for collections of vectors: scalar θ, vector θ, collection of vectors (and beyond)

Θ.

P (·) denotes probability mass and density functions alike. P (X) is used as a name

for the distribution of the variable X and also to denote the marginal probability mass or

density at a realized value of X, i.e., P (X) also serves as a shorthand for P (X = x). Only

in cases where confusion would be likely or where the distinction is of central importance

shall I make a notational distinction between the realized value of a random variable and

the random variable itself. In such cases, as in the following section on Monte Carlo, I use

the lowercase version of the random variable to denote the realized value. When dealing

with a sequence of realized values of a random variable X generated as a sample to be

used for Monte Carlo, I denote the ith such member of the sample by X(i). The notation

P (·|·) is used for conditional probability mass and density functions. Hence P (X|Y ) is the

conditional probability of X given Y . When multiple variables are involved, commas are

used between them; P (Y, Z|W, X) is the conditional joint probability of Y and Z given W

and X. Sometimes the probability depends on a parameter, and that dependence is more

conveniently expressed by subscripting the P . For example, Pθ(X|Y ). The expected value

of a random variable X, is written E(X), and the conditional expectation of X given Y is

written E(X|Y ). If the expection of X is taken with reference to a distribution indexed

by a particular parameter, say θ0, it may be written as Eθ0 . The variance of X is denoted

Var(X).

Occasionally, such as in the following section or while denoting proposal distributions
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for Metropolis Hastings sampling, I shall use upper or lowercase italic letters to refer to

probability mass or density functions of random variables.

1.5 Monte Carlo techniques

This section provides elementary background on the Monte Carlo method, importance sam-

pling, Rao-Blackwellization, and Markov chain Monte Carlo.

1.5.1 History and definition of Monte Carlo

The term “Monte Carlo” was apparently used by Stanislaw Ulam and John von Neumann

as a Los Alamos code word for the stochastic simulations they applied to building hydrogen

bombs following World War II. Shortly after the War, and coinciding with the debut of the

ENIAC computer in 1947, von Neumann and Ulam suggested that the ENIAC would be

useful for applying “statistical sampling” approximations to solving the problem of neutron

diffusion in fissionable material. Their methods, involving the laws of chance, performed

well, and soon thereafter were aptly named by Nick Metropolis after Monte Carlo, the inter-

national gaming destination. The moniker stuck and soon after the War a wide range of dif-

ficult problems yielded to the new techniques (Metropolis 1987). Despite the widespread

use of the methods, and numerous descriptions of them in articles and monographs, it is

virtually impossible to find a succint definition of “Monte Carlo method” in the literature.

Perhaps this is owing to the intuitive nature of the topic which spawns many definitions by

way of specific examples. Some authors prefer to use the term “stochastic simulation” for

almost everything, reserving “Monte Carlo” only for Monte Carlo integration and Monte

Carlo tests (Ripley 1987). Others seem less concerned about blurring the distinction be-

tween simulation studies and Monte Carlo methods. Be that as it may, I adopt the following

terse definition:

Monte Carlo is, in essence, the approximation of an expectation by the sample

mean of a function of simulated random variables.

We will find that this definition is broad enough to cover everything that has been called

Monte Carlo, and yet makes clear the fundamental feature of Monte Carlo in very familiar
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terms: Monte Carlo is about invoking laws of large numbers to approximate expectations.

This applies when the simulated variables are independent of one another, and may apply

when they are correlated with one another, for example if they are states visited by an

ergodic Markov chain. The Monte Carlo method is useful precisely because very many

quantities of interest may be expressed as expectations.

While most Monte Carlo simulations are done by computer today, there were several

applications of Monte Carlo methods using coin-flipping, card-drawing, or needle-tossing

(rather than computer-generated pseudo-random numbers) centuries ago—long before the

name Monte Carlo arose.

In more mathematical terms: Consider a random variable X (though depicted as a

scalar, all of the following extends to multidimensional random variables) having probability

mass function or probability density function fX(x) which is greater than zero on a set of

values X . Then the expected value of a function g of X is

E[g(X)] =
∑
x∈X

g(x)fX(x) (1.1)

if X is discrete, and

E[g(X)] =
∫

x∈X
g(x)fX(x)dx (1.2)

if X is continuous. If we were to take an n-sample of X’s, (x(1), . . . , x(n))1, and we computed

the mean of g(x) over the sample, then we would have the Monte Carlo estimate

g̃n(x) =
1
n

n∑
i=1

g(x(i))

of E[g(X)]. We could, alternatively, speak of the random variable

g̃n(X) =
1
n

n∑
i=1

g(X(i))

which we call the Monte Carlo estimator of E[g(X)].

1In this section, the distinction between the random variable X and its realized value x is crucial, so
a notational distinction is made between the two—capital X and X(i) refer to random variables while
lowercase x and x(i) refer to realized values of the random variable X.
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If E[g(X)], exists, then the weak law of large numbers tells us that for any arbitrarily

small ε

lim
n→∞

P (|g̃n(X)− E[g(X)]| ≥ ε) = 0.

This tells us that as n gets large, there is small probability that g̃n(X) deviates more than

a tiny bit from E[g(X)]. For our purposes, the strong law of large numbers says much the

same thing—the important part being that so long as n is large enough, g̃n(x) arising from

a Monte Carlo experiment shall be as close to E[g(X)] as desired. This extends to samples

from Markov chains via the weak law of large numbers for the number of passages through

a recurrent state in an ergodic Markov chain (see Feller 1957).

It should also be clear that g̃n(X) is unbiased for E[g(X)]:

E[g̃n(X)] = E

(
1
n

n∑
i=1

g(X(i))

)
=

1
n

n∑
i=1

E[g(X(i))] = E[g(X)].

These properties of random samples become useful when one realizes that very many

quantities of interest may be cast as expectations. Most importantly for applications in this

dissertation, it is possible to express all probabilities and summations as expectations:

Probabilities: Let Y be a random variable. The probability that Y takes on some value in

a set A can be expressed as an expectation using the indicator function:

P (Y ∈ A) = E[I{Y ∈ A}] (1.3)

where I{Y ∈ A} is the indicator function that takes the value 1 when Y ∈ A and 0

when Y 6∈ A.

Summations: Any sum, even the sum of a collection of deterministic variables may be

represented as an expectation. For example the sum of a function q(b) over the values

of b in a finite set B, may be written as an expectation of a random variable, say W ,

which takes values in B. In the simplest form, W could take any value in B with equal

probability p, and the sum could be cast as the expectation∑
b∈B

q(b) =
1
p

∑
b∈B

q(b)p =
1
p
E[q(W )].
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The immediate consequence of this is that all probabilities and summations can be approx-

imated by the Monte Carlo method. And further, there is no restriction that says W above

must have a uniform distribution. This was just for easy illustration. We will explore this

point more while considering importance sampling.

The variety of quantities that may be estimated by Monte Carlo is great. In addition to

probabilities and summations, it is also possible to estimate integrals, probability distribu-

tions, and variances, etc. In each of these cases, the fundamental feature is the same—the

quantity of interest may be expressed as an expectation which is then approximated by

Monte Carlo. For example, to approximate a probability distribution, (1.3) may be applied

K times to K different sets Ak, k = 1, . . . , K, which, taken together, give a histogram rep-

resentation of the distribution. Or, to estimate the variance of a random variable Y , that

variance may be expressed as an expectation (namely the expected value of (Y −EY )2) and

estimated via Monte Carlo accordingly.

Many problems in statistical genetics provide examples where a quantity of interest is a

summation. In such cases the probability P (Y ) of an observed event Y must be computed

as the sum over very many latent variables X of the joint probability P (Y, X). In such a

case, Y is typically fixed, i.e., we have observed Y = y, and we are interested in P (Y = y),

but we can’t observe the values of the latent variables which may take values in the space

X . Though it follows from the laws of probability that

P (Y = y) =
∑
x∈X

P (Y = y, X = x),

quite often X is such a large space (contains so many elements) that it is impossible to

compute the sum. Application of the law of conditional probability, however, gives

P (Y = y) =
∑
x∈X

P (Y = y, X = x) =
∑
x∈X

P (Y = y|X = x)P (X = x). (1.4)

The term following the last equals sign is the sum over all x of a function of x (namely,

P (Y = y|X = x)), weighted by the marginal probabilities P (X = x). Clearly this is an

expectation, and therefore may be approximated by Monte Carlo, giving us

P (Y = y) ≈ 1
n

n∑
i=1

P (Y = y|X = x(i)) (1.5)
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where x(i) is the ith realization from the marginal distribution of X.

Unfortunately, (1.5) would probably provide a very poor Monte Carlo estimate. Though

it is typically easy to formulate a quantity as an expectation and to propose a “naive”

Monte Carlo estimator, it is quite another thing to have the Monte Carlo estimator actually

provide good estimates in a reasonable amount of computer time. For most problems, a

number of Monte Carlo estimators may be proposed; however some Monte Carlo estimators

are clearly better than others. Typically, a “better” Monte Carlo estimator has smaller

variance (for the same amount of computational effort) than its competitors. The variance

of a Monte Carlo estimator is easily defined. Going back to our original notation, we have

the random variable g̃n(X), a Monte Carlo estimator of E(g(X)). Like all random variables,

we may compute its variance (if it exists) by the standard formulas:

Var(g̃n(X)) = Var

(
1
n

n∑
i=1

g(X(i))

)
=

Var(g(X))
n

=
1
n

∑
x∈X

[g(x)− E(g(X))]2fX(x) (1.6)

if X is discrete, and

Var(g̃n(X)) = Var

(
1
n

n∑
i=1

g(X(i))

)
=

Var(g(X))
n

=
1
n

∫
x∈X

[g(x)− E(g(X))]2fX(x)dx

(1.7)

if X is continuous. For the rest of this section, we will do everything in terms of integrals

over continuous variables, but it applies equally well to sums over discrete random variables.

There are many ways to reduce the variance of Monte Carlo estimators. Of these

“variance-reduction” techniques, the one called “importance sampling” is particularly use-

ful. I include a short section on it here, as it will be used in Chapter 2.

1.5.2 Importance sampling

Importance sampling (Hammersley and Handscomb 1964) is the art of choosing a good

distribution from which to simulate one’s random variables. It involves multiplying the

integrand by 1 (usually dressed up in a “tricky fashion”) to yield an expectation of a

quantity that varies less than the original integrand over the region of integration. For

example, let h(X) be a density for the random variable X which takes values only in A so
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that
∫
x∈A h(x)dx = 1. Then h(x)

h(x) is a “tricky way” to write 1, and so it follows that∫
x∈A

g(x)dx =
∫

x∈A
g(x)

h(x)
h(x)

dx =
∫

x∈A

g(x)
h(x)

h(x)dx = Eh

(
g(X)
h(X)

)
, (1.8)

so long as h(x) 6= 0 for any x ∈ A for which g(x) 6= 0, and where Eh denotes the expectation

with respect to the density h. This gives a Monte Carlo estimator:

g̃h
n(X) =

1
n

n∑
i=1

g(X(i))
h(X(i))

where X(i) ∼ h(X). (1.9)

Using (1.7) and the Cauchy-Schwarz inequality, it can be shown that Var(g̃h
n(X)) is

minimized when h(x) ∝ |g(x)| (see Rubinstein 1981, p. 123). If we restrict our attention

to what for most of our purposes is the relevant case,2 that is, g(x) ≥ 0 ∀x ∈ A, then

it is immediately apparent that the choice of the density h(x) which minimizes Monte

Carlo variance is proportional to g(x), i.e., if αh(x) = g(x) where α is some constant of

proportionality, then clearly we have g(x)/h(x) = α ∀{x : h(x) > 0} so E(g(X)/h(X)) = α

and hence the Monte Carlo variance would be zero by (1.7).

This seems wonderful—to obtain a Monte Carlo estimator with zero variance we could

use (1.9), choosing our density h proportional to the function g. The absurdity of this

wishful thinking is that the ability to simulate independent random variables from h(x), or

the ability to compute the density h(x), itself, implies that the normalizing constant of the

distribution is computable, which in turn would imply that the original integral involving

g(x) is computable and there would hence be no reason to do Monte Carlo at all! Ultimately,

however, it makes clear that a good importance sampling function (as h is called) will be

one that is as close as possible to being proportional to g(x)

In summary, a good importance sampling function h(x) has the following properties:

1. h(x) > 0 whenever g(x) 6= 0, (this is required for (1.8) to hold)

2. h(x) should be close to being proportional to |g(x)|

3. it should be easy to simulate values from h(x)

2This is typically the relevant case because we are interested in non-negative quantities like probabilities.
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4. it should be easy to compute the density h(x) for any value x that you might realize.

Fulfilling this wish-list in high dimensional space (where Monte Carlo techniques are most

useful) is often a tall task—it is the main difficulty addressed in Chapter 2.

Note also that g(x) is any arbitrary function, so it certainly includes the integrand of

a standard expectation. For example, with X ∼ fX we might be interested in E(r(X)) for

some function r so we could use

E(r(X)) =
∫

r(x)fX(x)dx =
∫

r(x)fX(x)
h(x)

h(x) = Eh

(
r(x)fX(x)

h(x)

)
and approximate that by Monte Carlo, simulating values x(1), . . . , x(n) from a distribution

h(x) that is close to proportional to r(x)fX(x).

Going back to the sum over latent variables problem often encountered in statistical

genetics, importance sampling gives us a way to improve upon (1.5). From (1.4) it is clear

that the optimal importance sampling function would be the conditional distribution of X

given Y , i.e.,

P (Y = y) =
∑
x∈X

P (Y = y, X = x) =
∑
x∈X

P (Y = y, X = x)
P (X|Y = y)

P (X|Y = y).

Note that the right side is a conditional expectation of a function of X. As before P (X|Y )

is not computable. So one must turn to finding some other distribution, say P ∗(X), that is

close to P (X|Y ) but which is more easily sampled from and computed.

It is worth noting that, for making likelihood inference of a quantity, it is sufficient to

be able to determine the likelihood function up to an unkown normalizing constant, i.e., it

suffices to calculate ψP (Y = y) where ψ is unknown. If the value of the normalizing constant

ψ is not required, then the unnormalized probability ψP (Y = y) may be obtained by

importance sampling using an importance sampling function h(x) which is also known only

up to a normalizing constant. Estimating likelihood ratios in this way has been described

by Thompson and Guo (1991).

A common pitfall of importance sampling: As a final word on importance sampling,

it should be pointed out that the tails of the distributions matter ! While h(x) might be
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roughly the same shape as g(x), serious difficulties arise if h(x) gets small much faster than

g(x) out in the tails. In such a case, though it is improbable (by definition) that you will

realize a value x(i) from the far tails of h(x), if you do, then your Monte Carlo estimate

will be very large—g(x(i))/h(x(i)) for such an improbable x(i) may be orders of magnitude

larger than the typical values g(x)/h(x) that you see. On the other hand, if no or few such

values x(i) are realized from the far tails of h(x), then the Monte Carlo estimate tends to

be too small, which is equally undesirable. Such cases make importance sampling difficult,

and underscore the importance of choosing a good importance sampling function h(x).

1.5.3 Rao-Blackwellized estimators

Especially in the Bayesian analysis of complex stochastic models, one may be interested in

approximating the marginal posterior probability distributions of many different quantities

of interest. In performing Monte Carlo in such models, many different variables are simu-

lated, and by using or combining those simulated variables in different ways, one can derive

different Monte Carlo estimators for the same quantity. Some of these estimators will be

preferable to others. A variance reduction technique named “Rao-Blackwellization” (Liu

et al. 1994) provides a guideline for determing which of the possible Monte Carlo estimators

for a quantity should be used. I describe Rao-Blackwellization here in the context in which

it is employed throughout the dissertation—in the Monte Carlo estimation of probabilities.

Intuitively, the principle of Rao-Blackwellization can be understood as follows: let W be

a random variable describing the probability that a variable, say λ, falls in a set L. Then,

assuming we could simulate values of W , we could estimate P (λ ∈ L) by the Monte Carlo

estimate, 1
n

∑n
i=1 w(i). Each w(i) will be a value between zero and one. An alternative

estimate could be proposed: 1
n

∑n
i=1 a(i), where each a(i) takes the value 0 if a uniform real

number on (0, 1), say U (i) is less than w(i), and the value 1 if U (i) > w(i). Doing so would be

naive, because some information is lost in condensing the real-valued w(i)’s into the integer-

valued a(i)’s. Nonetheless, this sort of loss of information is routinely carried out by people

doing complicated Monte Carlo studies. Rao-Blackwellization, in the limited context I will

use it in the dissertation, is the name given to improving upon a Monte Carlo estimate of
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the form 1
n

∑n
i=1 a(i) by using, instead, a Monte Carlo estimate of the form 1

n

∑n
i=1 w(i).

The general context in which it arises in the following chapters is described below.

Let us suppose that we have a probability model with three variables (which, again,

may be multidimensional), X, Y and λ, having the joint distribution P (X, Y, λ). Suppose

that the value of Y is known, and the quantity that we desire to know is P (λ ∈ L|Y ), the

conditional probability, given Y , that λ is in some set L. This quantity may be written as

P (λ ∈ L|Y ) =
∑
x∈X

P (λ ∈ L, X = x|Y )

=
∑
x∈X

P (λ ∈ L|Y, X = x)P (X = x|Y )

= E[P (λ ∈ L|Y, X)|Y ]. (1.10)

Thus, a Monte Carlo estimator of P (λ ∈ L|Y ) may be obtained as

P (λ ∈ L|Y ) ≈ 1
n

n∑
i=1

P (λ ∈ L|Y, X(i)) (1.11)

where X(i) is simulated from P (X|Y ). This would, in fact, be the Rao-Blackwellized esti-

mator for P (λ|Y ). Nonetheless, its use is sometimes overlooked, for the following reason:

in many cases such as this, it is impossible to obtain samples X(i) “directly” from P (X|Y ).

Rather, only samples (X(i), λ(i)), i = 1, . . . , n, are available, and it is thus tempting to apply

(1.3) (rather than using (1.11)) to obtain the Monte Carlo estimator

P (λ ∈ L|Y ) ≈ 1
n

n∑
i=1

I{λ(i) ∈ L}. (1.12)

This is often a poor choice, however, because, for independent samples (λ(i), X(i), Y (i)), the

variance of (1.12) can be shown to always be greater than or equal to the variance of the

Monte Carlo estimator of (1.11) (Gelfand and Smith 1990). This may be proved using

the Rao-Blackwell theorem (hence the name) applied to the case where P (λ ∈ L|Y ) is

the “parameter” to be estimated, (1.12) is the unbiased estimator based on an insufficient

statistic for the parameter, and (1.11) is the Rao-Blackwellized version of (1.12).

When the samples (λ(i), X(i), Y (i)) are dependent across i, as is the case with Markov

chain Monte Carlo, the superiority of the estimator (1.11) is more difficult to establish.



21

Liu et al. (1994) prove the superiority of (1.11) for estimating expectations of functions of

either λ or X, alone, with Markov chains having certain properties. However, they also

present an example in which a Rao-Blackwellized estimator has higher variance than the

simple estimator. Nonetheless, experience suggests that in most cases involving the MCMC

estimation of probabilities, the Rao-Blackwellized estimator will perform better, especially

as regards estimating probabilities in the tails of the distribution.

Quite often, the quantity P (λ ∈ L|Y, X(i)) must be computed anyway during the process

of realizing a simulated pair of variables (X(i), λ(i)). In such cases the variance reduction of

(1.11) comes “for free.” The practitioner of Monte Carlo should always be on the lookout

for opportunities to Rao-Blackwellize Monte Carlo estimators.

1.5.4 Markov chain Monte Carlo—using dependent samples of X

The “Monte Carlo” part of Markov chain Monte Carlo is essentially identical to regular

Monte Carlo (except assessing convergence, etc.). The main difference is that the elements

of the Monte Carlo sample (X(1), . . . , X(n)) are not independent of one another. Rather they

are sampled as states visited by an ergodic Markov chain. The main novelty is the need for

some method to construct a Markov chain with the appropriate limit distribution. Almost

all techniques for doing so are variants of the Metropolis-Hastings sampler (Hastings 1970).

This method provides a way of constructing a time-reversible Markov chain with limit

distribution π by satisfying, at each transition of the chain, the detailed balance condition

implied by π. This may be achieved when π is known only up to a normalizing constant.

Details of this may be found in numerous texts.
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Chapter 2

IMPORTANCE SAMPLING AND MONTE CARLO

LIKELIHOOD FOR NE

2.1 Introduction

Reductions in population size can lead to inbreeding which increases the probability of

population extinction in typically outbreeding species (Frankham 1995). Reductions in

population size also lead to a loss of genetic diversity which may reduce a population’s ability

to adapt to changing conditions (Soulé 1986). To predict the risk to a population from these

types of genetic factors, biologists are often interested in knowing the effective population

size, Ne. An effective size is defined by comparison to an ideal population model, the Wright-

Fisher model. The Wright-Fisher model assumes discrete, non-overlapping generations of

constant size, and it assumes that the gametes which unite to form adults in one generation

are randomly sampled with replacement from the previous generation. The variance effective

size of a natural population is the size of a Wright-Fisher population which would experience

a comparable increase in variance of gene frequency over time. The inbreeding effective size

is defined similarly, but is based on the increase in gene identity by descent over time.

It is possible to estimate the variance effective size from observed changes in allele

frequencies in a population over time. Moment-based estimators using F -statistics have been

developed for this purpose (Krimbas and Tsakas 1971; Nei and Tajima 1981; Pollak

1983; Waples 1989; Jorde and Ryman 1995). Recently, Williamson and Slatkin (1999)

described a method to estimate Ne by the method of maximum likelihood. To find the

maximum likelihood estimate N̂e of Ne, given allele frequencies observed in samples taken

from a population at different times, one models the population underlying the samples

as a Wright-Fisher population. N̂e is then the size of that underlying, ideal population

for which the observed data are most probable. In simulation studies Williamson and
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Slatkin (1999) showed that the maximum likelihood estimator outperformed the moment-

based estimators, and they also demonstrated how a likelihood approach may be extended

to estimate paramaters in more complex population models.

This likelihood method has been restricted to data on diallelic loci, because, with data on

multiallelic loci, evaluating the likelihood for Ne exactly is computationally intractable. In

this chapter, I describe this problem as one of inference from a hidden Markov chain (Baum

et al. 1970), and describe an algorithm for importance sampling which makes it possible to

compute the likelihood by Monte Carlo. Much of this work was pursued in collaboration

with Dr. Ellen Williamson when she was a postdoctoral researcher in Montgomery Slatkin’s

group at University of California, Berkeley. It was previously presented in Anderson et al.

(2000), and the treatment here follows very closely from that.

2.2 Formulation of the Model and Monte Carlo

2.2.1 The model

The data are random genetic samples collected at different generations. The first sample

is collected at generation 0 and the last sample at generation T . Any samples drawn

at intervening generations may be evenly or irregularly spaced in time. For notational

simplicity, we assume for now that individuals are genotyped at a single locus, though we

describe later the extension to multiple, independently-segregating loci. The data include K

different allelic types, indexed by k = 1, . . . , K. The allele frequencies observed in samples

taken from different generations will differ due to genetic drift and sampling variation.

Let Y t = (Yt,1, . . . , Yt,K) be the counts of the K different allelic types in the sample

at generation t, and let St denote the number of diploid individuals in the sample. We

assume that the samples were taken from a Wright-Fisher population of size Ne, and denote

the unobserved population allele counts at generation t by Xt = (Xt,1, . . . , Xt,K), with∑K
k=1 Xt,k = 2Ne. By the formulation of the Wright-Fisher model, the Xt form a Markov

chain in time, with transitions defined by multinomial probabilities depending on Ne,

PNe(Xt|X0, . . . ,Xt−1) = PNe(Xt|Xt−1) = (2Ne)!
K∏

k=1

[Xt−1,k/(2Ne)]Xt,k

Xt,k!
. (2.1)
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Figure 2.1: A graph showing the dependence between components of X and Y. The Y t’s
are observations of a hidden Markov chain. The graph shown represents a situation where
samples were taken at generations 0, 2, t, and T , and no samples were taken at generations
1 and t− 1.

The genetic sample at a time t is assumed to be drawn with replacement from the copies

of alleles present in the population at time t, and sampled individuals are assumed to still

be able to reproduce. This is equivalent to drawing the sample Y t from a very large gamete

pool produced by the population at time t: Sampling Plan I of Waples (1989). This type of

sampling applies to many organisms, especially those species with high fecundity that may

be sampled as juveniles (in which case the juveniles are assumed to carry a representative

sample of alleles from the adults, and the number of juveniles is very large, so sampling

without replacement from the juveniles is like sampling with replacement from the adults)

or those that may be sampled as adults in populations having census sizes considerably

larger than their effective sizes (Waples 1989). The sample allele counts Y t, given the

latent variable Xt, are conditionally independent of all the other variables and follow the

multinomial distribution depending on the parameter Ne, the sample size St, and Xt:

PNe(Y t|Xt) = (2St)!
K∏

k=1

[Xt,k/(2Ne)]Yt,k

Yt,k!
(2.2)

when St > 0. If there is no sample taken from the population at generation t, then St ≡ 0,

and we define PNe(Y t|Xt) ≡ 1.

Such a system forms a hidden Markov chain with the dependence structure shown in the

directed graph of Figure 2.1. The allele counts in the population when the first sample is

drawn, X0, are nuisance parameters. To avoid having to estimate the nuisance parameter

X0 we consider an integrated likelihood by assuming a prior distribution, PNe(X0), on X0

and integrating over that prior. We use a uniform prior on the set of components of X0
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satisfying
∑K

k=1 X0,k = 2Ne. It would be possible to use a different prior based on either

theoretical considerations (Wright 1938; Wright 1952) or empirical evidence as to typical

frequencies of alleles in different types of locus systems. However, in numerical results,

the effect of different priors on the integrated likelihood are negligible (Ellen Williamson,

University of California, Berkeley, pers. comm.) This is expected—so long as the allele count

priors are relatively non-informative (as they should be) the information in the first sample,

Y 0, will always be much greater than the information in the prior; thus the influence of the

prior is minimal.

The likelihood for Ne is the probability of the data Y = (Y 0, . . . ,Y T ) given the pa-

rameter Ne. The probability of Y is the sum of the joint probability of Y and the latent

variables X = (X0, . . . ,XT ) over the space of all X

PNe(Y) =
∑
X

PNe(Y,X) (2.3)

=
∑

X0,...,XT

(
PNe(X0)PNe(Y 0|X0)

T∏
t=1

PNe(Xt|Xt−1)PNe(Y t|Xt)

)
.

For the case of K = 2 and Ne small the likelihood in (2.4) may be computed exactly.

Williamson and Slatkin (1999) effected the summation in (2.4) in terms of multiplication

of transition probability matrices. The dimension of the square matrices is (Ne−1)!/[(Ne−
K)!(K−1)!] which increases rapidly with Ne and K. The hidden Markov form of the system

allows a more efficient direct computation of the likelihood using the algorithm of Baum

(1972). Nonetheless, exact evaluation for multiple alleles would still require prohibitively

large amounts of computation and storage. An alternative is to estimate PNe(Y) by Monte

Carlo.

2.2.2 Monte Carlo evaluation

For likelihood inference, we must evaluate PNe(Y) for a number of different values of Ne.

Expressing this probability as an expectation with respect to the distribution of X gives

PNe(Y) =
∑
X

PNe(Y,X) =
∑
X

PNe(Y|X)PNe(X) = ENe

(
PNe(Y|X)

)
. (2.4)
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In this form the expectation would be taken over the marginal probabilities of X, and it

could be estimated by Monte Carlo as

PNe(Y) ≈ 1
m

m∑
i=1

PNe(Y|X(i)) (2.5)

for large m, with X(i) being the ith realization from the marginal distribution of X. Such a

naive scheme fails, however, because PNe(Y|X(i)) varies greatly over the values of X realized

from their marginal distribution, resulting in enormous Monte Carlo variance.

Instead, we pursue a more efficient Monte Carlo approximation by using importance

sampling (Section 1.5.2). We express PNe(Y) as an expectation with respect to a different

distribution P ∗Ne(X) such that P ∗Ne(X) > 0 for all X such that PNe(Y,X) > 0. Thus we

have:

PNe(Y) =
∑
X

PNe(Y,X)
P ∗Ne(X)

P ∗Ne(X) = E∗Ne

(
PNe(Y,X)

P ∗Ne(X)

)
(2.6)

where E∗Ne indicates that the expectation is over the space of X weighted by the distribution

P ∗Ne(X). The expectation (2.6) may be estimated by Monte Carlo, giving

PNe(Y) ≈ P̃Ne(Y) =
1
m

m∑
i=1

PNe(Y,X(i))
P ∗Ne(X

(i))
(2.7)

for large m where X(i) is the ith realization of X drawn from P ∗Ne(X). The Monte Carlo

variance of P̃Ne(Y) is made small when PNe(Y,X)/P ∗Ne(X) varies little across the possible

values of X, and would be minimized if P ∗Ne(X) were exactly proportional to PNe(Y,X).

Such a distribution of X would, by definition, be the conditional distribution PNe(X|Y).

Unfortunately, for the same reasons that PNe(Y) cannot be computed exactly, it is infeasible

to compute PNe(X|Y). Nonetheless, the Monte Carlo variance of P̃Ne(Y) will be reduced

to the extent that P ∗Ne(X) resembles PNe(X|Y). The next subsection describes a method

for rapid simulation of X(i)’s from a distribution P ∗Ne(X) which is close to PNe(X|Y). As is

required for the importance sampling, it is also possible to compute P ∗Ne(X
(i)) quickly for

each X(i) generated.

2.2.3 Sampling from P ∗Ne(X) by a forward-backward method

Baum et al. (1970) describe computations applicable to hidden Markov chains that may be

adapted for the purpose of efficiently realizing latent variables, such as X = (X0, . . . ,XT ),
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from their exact conditional distribution given the observed variables, Y = (Y 0, . . . ,Y T ).

This “forward-backward” algorithm first employs a forward step in which the conditional

probability distributions of each Xt, given the observed variables up to and including Y t,

are recursively computed and stored using the relation

P (Xt|Y 0, . . . ,Y t) ∝
∑
Xt−1

P (Xt−1|Y 0, . . . ,Y t−1)P (Xt|Xt−1)P (Y t|Xt), (2.8)

which is normalized by the sum of that quantity over all the values of Xt. The last such

conditional distribution computed is P (XT |Y 0, . . . ,Y T ). The backward step begins with

simulating a valueX(i)
T from this distribution (where, as before, the superscript (i) indicates

a realized value of a random variable). One then proceeds backward, realizing X(i)
T−1 from

its conditional distribution given all of the observed variables, Y, and X(i)
T . In similar

fashion, one realizes X(i)
T−2 and so forth back to X(i)

0 . In this backward phase, each X(i)
t is

simulated from its conditional distribution given all the data Y and all of the components

of X which have been realized so far. That is, X(i)
t is drawn from

P (Xt|Y 0, . . . ,Y T ,X
(i)
t+1, . . . ,X

(i)
T ). (2.9)

Because of the conditional independence implied by the hidden Markov chain structure,

(2.9) reduces to P (Xt|Y 0, . . . ,Y t,X
(i)
t+1) which may be computed using the distributions

stored during the forward step by the relation

P (Xt|Y 0, . . . ,Y t,X
(i)
t+1) ∝ P (Xt|Y 0, . . . ,Y t)P (X(i)

t+1|Xt). (2.10)

At the end of the backward step, it is clear that the resulting realization, (X(i)
0 , . . . ,X

(i)
T ),

is from the conditional distribution of X given Y.

An approximation for multiple alleles: In our application, with multiple alleles at a

locus, since there are so many possible states that each Xt may take, the above procedure

is computationally infeasible. However, we make use of the Baum et al. (1970) algorithm

in spirit, employing two alterations to make it feasible to simulate from P ∗Ne(X) and to

compute its value. It should be noted that although the method described below involves a

series of “approximations” by which P ∗Ne(X) differs from PNe(X|Y), the final sampling and



28

computation of P ∗Ne(X), is exactly from the distribution P ∗Ne(X) as constructed, so its use

in (2.7) gives a true Monte Carlo estimate.

The first approximation is to perform the forward-backward cycle separately for each

allele. To describe this, we introduce some more notation. Denote by X(k) the vector

(X0,k, . . . , XT,k) of latent counts of the kth allele from time t = 0 to t = T . Similarly we

define Y (k) = (Y0,k, . . . , YT,k). To do the forward-backward cycle separately over alleles we

first focus on allele 1, simulating X(i)
(1) by the forwards-backwards mechanism as if the data

were on a diallelic locus with observed counts Y (1) from samples of size S0, . . . , ST through

time. Once we have realized X(i)
(1) we update the sizes of the population and the sample.

Thus we define the updated population size vector 2N∗(2) = (2Ne −X
(i)
0,1, . . . , 2Ne −X

(i)
T,1)

and an updated sample size vector 2S∗(2) = (2S∗0,2, . . . , 2S∗T,2) = (2S0−Y0,1, . . . , 2ST −YT,1),

in effect removing the first allelic type from the remainder of the data and the population.

We then use the forward-backward mechanism again to simulate X(i)
(2), as though the data

were counts Y (2) from a diallelic locus drawn from a population with sizes that change

over time, N∗(2), and sample sizes S∗(2). This continues sequentially over alleles updating

population sizes and sample sizes as above: 2N∗(k) ← (2N∗(k−1) − X
(i)
(k−1)) and 2S∗(k) ←

(2S∗(k−1) − Y
(i)
(k−1)), until X(K−1) has been realized, which also determines that X(K) ←

(2N∗(K−1) −X
(i)
(K−1)). (Here and later the notation A← B means “the value B is assigned

to the variable A.”) At the end one has obtained a realized value X(i) which may be used

in (2.7).

P ∗Ne(X) using a continuous approximation: Though realizing alleles sequentially, as

above, greatly reduces the number of terms required to use (2.8) and (2.10), the method

would still involve a prohibitive amount of summation over binomial probabilities. Thus,

we construct P ∗Ne(X) employing a normal approximation to binomial probabilities which re-

places all such sums by analytically tractable integrals. Recall that if W ∼ Binomial(n, p),

then the transformed variable sin−1(W/n)1/2 is approximately normally distributed with

variance 1/(4n). Notice that this quantity does not depend on p. We use this transfor-

mation to define the quantities φt,k = sin−1[Yt,k/(2S∗t,k)]
1/2 when S∗t,k > 0, and θt,k =

sin−1[Xt,k/(2N∗t,k)]
1/2. By realizing the continuous values θ

(i)
t,k in a forward-backward frame-
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work within a continuous setting, the computational demands are greatly reduced. And

then, by transforming each θ
(i)
t,k back into the appropriate, discrete X

(i)
t,k we have a way to

realize X(i) from P ∗Ne(X) and to compute the probability P ∗Ne(X
(i)). The details of this

procedure are given in Section 2.3. We use it to compute the Monte Carlo estimate P̃Ne(Y)

using (2.7).

2.2.4 Monte Carlo variance and multiple loci

The quantity P̃Ne(Y) is only an estimate of the true value PNe(Y). By the Central Limit

Theorem, for large m, P̃Ne(Y) will be approximately normally distributed (Hammersley

and Handscomb 1964) with mean PNe(Y) and a variance which may be approximated

without bias by the quantity

V̂ar(P̃Ne(Y)) =
1

m(m− 1)

m∑
i=0

(
PNe(Y,X(i))

P ∗Ne(X
(i))

− P̃Ne(Y)

)2

. (2.11)

These facts may be used to obtain a confidence interval estimate around P̃Ne(Y) for each

value of Ne investigated.

The ability to estimate Ne with adequate precision requires data from many loci. The

extension to data on J independently-segregating loci, indexed by j = 1, . . . , J , is straight-

forward: each locus is treated separately, and the estimated likelihoods from each locus are

multiplied together.

Thus, let P̃Ne,j(Y) be the Monte Carlo likelihood estimate from the data on the jth

locus. The Monte Carlo likelihood estimate using all the loci is then

P̃ J
Ne(Y) =

J∏
j=1

P̃Ne,j(Y). (2.12)

This provides a more efficient Monte Carlo estimator than another unbiased estimator for

P̃ J
Ne

(Y) that one might consider:

1
n

n∑
i=1

( J∏
j=1

PNe,j(Y,X(i))
P ∗j (X(i))

)
.

A proof of this is given in Appendix A. For (2.12) to hold, the initial allele counts must have

independent prior distributions, PNe(X0). Additionally, implicit in (2.12) is the assumption



30

that the loci used are in linkage equilibrium at t = 0, and they remain in equilibrium over

the interval between samples. While even unlinked loci will exhibit random departures

from linkage equilibrium due to finite population size (Hill 1981; Bartley et al. 1992),

these random departures from linkage equilibrium should not greatly influence the accuracy

of (2.12).1 P̃ J
Ne

(Y) will also have an approximately normal distribution. An unbiased

estimator for its Monte Carlo variance is

V̂ar(P̃ J
Ne(Y)) =

J∏
j=1

(
P̃Ne,j(Y)

)2

−
J∏

j=1

(
[P̃Ne,j(Y)]2 − V̂ar(P̃Ne,j(Y))

)
. (2.13)

which can be derived following the variance of a product of J independent random variables,

Wj , j = 1, . . . J :

Var(
∏

Wj) = E([
∏

Wj ]2)− [E(
∏

Wj)]2 (definition of variance) (2.14)

= E([
∏

W 2
j ])− [E(

∏
Wj)]2 (powers distribute over products)

=
∏
E(W 2

j )−
∏

[E(Wj)]2 (independence of the Wj)

=
∏
E(W 2

j )−
∏(

E(W 2
j )−Var(Wj)

)
(definition of variance).

Denoting P̃Ne,j(Y) in (2.13) by Wj and taking the expectation gives the same result, verify-

ing that the expression in (2.13) is unbiased for Var(P̃ J
Ne

(Y)). This can be used to compute

a confidence interval estimate around P̃ J
Ne

(Y).

When displaying the Monte Carlo likelihood curve it is preferable to plot the log-

likelihood values, log P̃ J
Ne

(Y), for different values of Ne. In this case, the endpoints of

the confidence intervals may be similarly log-transformed.

2.3 Details of Using θt,k and φt,k in a Continuous Setting

The many details of the continuous approximation used to simulate from P ∗Ne(X) are de-

scribed in the following five sub-sections. In summary, the approximation works as follows:

1These random departures from linkage equilibrium have been used by Hill (1981) and Bartley et al.
(1992) to estimate a population’s effective size from the observed gametic disequilibrium in a single genetic
sample. An interesting line of future research might be to derive a probability model that modeled both
the temporal changes between samples and the gametic disequilibrium within each sample, and thus use
both of those sources of information to estimate the effective size.
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the process of allele frequency drift in a Wright-Fisher model is approximated by Brownian

motion of the angularly transformed allele freqencies. Like the allele counts of X, these

transformed variates are related through time in a hidden Markov chain but with normally-

distributed transition densities (due to the Brownian motion approximation). Therefore,

the forward-backward method may be applied to these transformed variates, so that real-

izations of them may be made conditional on the data. This is described in Sections 2.3.1

and 2.3.2.

Of course, for the importance sampling, we require simulated values of X, and not

simulated values of a transformation of X. Therefore, the angularly transformed, simulated

variables must be transformed back into X’s before they are useful. This is a difficult

task because, in the process of back-transforming, one must be certain to consider the

existence of all the alleles in the population, and because the Brownian motion, though

unbounded, is an approximation to a stochastic process with boundaries. The procedure

for back-transforming the simulated variables is described in Section 2.3.4.

Computing P ∗Ne(X
(i)), after having simulated X(i) by this method, requires that one

consider the many possible values of the transformed, continuous variates that would have

led to the same X(i). The method for computing P ∗Ne(X
(i)) is described in Sections 2.3.3

and 2.3.5.

We define the random variables φt,k = sin−1[Yt,k/(2S∗t,k)]
1/2 when S∗t,k > 0, and θt,k =

sin−1[Xt,k/(2N∗t,k)]
1/2. These quantities have an approximate normal distribution which is

independent of their means. We use them in our construction of the importance sampling

function P ∗Ne(X). Below we will concentrate on their use for realizing X(i)
(k), keeping in mind

that if k > 1 then we will have already realized X(i)
(k−1), and will be using the updated

population and sample sizes N∗(k) and S∗(k). If k = 1 then N∗(1) and S∗(1) are defined to be Ne

and S, respectively.

2.3.1 The forward step

Following Cavalli-Sforza and Edwards (1967), if θt−1,k is normally (N ) distributed

with mean µt−1 and variance σ2
t−1 then, after a generation of genetic drift in a population
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of N∗t,k diploids, θt,k has an approximate normal distributions with mean µt−1 and variance

σ2
t = σ2

t−1 + 1/(8N∗t,k). If there are data Yt,k from a sample of size St,k at time t, then φt,k

has an approximate normal distribution with mean θt,k and variance 1/(8S∗t,k), so, given

that θt,k ∼ N (µt, σ
2
t ), the conditional distribution of θt,k given φt,k is also normal. These

relations form the basis of a continuous approximation for doing the forward step. For the

purpose of realizing X we assume that the uniform prior on X0 is equivalent to a diffuse

prior on θ0,k. Therefore θ0,k|φ0,k ∼ N (µ0, σ
2
0) with µ0 = φ0,k and σ2

0 = 1/(8S∗0,k). With

that as a starting point, we work iteratively forward in time assigning values

µt ←− µt−1 (2.15)

σ2
t ←− σ2

t−1 + 1/(8N∗t,k) (2.16)

if S∗t,k = 0. If S∗t,k > 0, however, then one first computes µt and σ2 as in (2.15) and (2.16),

but then further updates the values to reflect the information in the sample at time t:

µt ←−
µt/(8S∗t,k) + σ2

t φt,k

1/(8S∗t,k) + σ2
t

(2.17)

σ2
t ←−

σ2
t /(8S∗t,k)

1/(8S∗t,k) + σ2
t

. (2.18)

This is analogous to computing a posterior distribution from a normal prior and normal

data (see, for example, Gelman et al. 1996, p. 43).

Carrying this out until t = T gives values for the mean and variance of θT,k given

φ0,k, . . . , φT,k, assuming they follow a normal distribution. In fact, for each t, it gives us the

parameters for the normal distribution of θt,k conditional on φr,k for all r ≤ t. We are thus

in a position to realize θ
(i)
t,k’s in the backward step and transform those θ

(i)
t,k’s back into the

X
(i)
t,k ’s that we need.

2.3.2 The backward step

The backward step is more complicated than the forward step, because after realizing each

value of θ
(i)
t,k we must transform it into the discrete value X

(i)
t,k that we require. This trans-

formation process requires some extra bookkeeping to ensure that we do not waste time
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realizing X(i)’s which are incompatible with the data. This bookkeeping is taken care of

by the mapM described in Section 2.3.4. We first realize the value θ
(i)
T,k from a N (µT , σ2

T )

distribution. Then we transform that to the realization X
(i)
T,k by a many-to-one map M

which has two effects: the first is that of folding and translating the distribution of θT,k so

that it is bounded between 0 and π/2, mapping θ
(i)
T,k ∈ (−∞,∞) to a value θ∗T,k ∈ [0, π/2].

The second is transforming that θ∗T,k into the appropriate value X
(i)
T,k (see Section 2.3.4).

Working backward, each θ
(i)
t,k, for t = T − 1 down to t = 0, is realized from a N (µt, σ

2
t )

distribution and then transformed into the corresponding θ∗t,k and X
(i)
t,k by M. In keeping

with (2.10), before any θ
(i)
t,k is realized, µt and σ2

t must be appropriately updated, based on

the values of µt and σ2
t stored during the forward step and the realized value θ

(i)
t+1,k. This

involves making the assignments

µt ←−
µt/(8N∗t+1) + σ2

t θ
∗
t+1,k

1/(8N∗t+1) + σ2
t

(2.19)

σ2
t ←− σ2

t /(8N∗t+1)
1/(8N∗t+1) + σ2

t

(2.20)

in the order as written.

2.3.3 Computing the probability P ∗Ne(X
(i))

By carrying out the forward-backward steps above on the first allele, the realization X(i)
(1)

is obtained. Then, N∗(2) and S∗(2) are computed, and used in the forward-backward steps

to obtain X(i)
(2). Executing these steps for all the alleles yields the realization X(i) which is

used in (2.7). PNe(Y,X(i)) in (2.7) is easily computed using the expansion shown between

the large parentheses in (2.4).

It remains only to compute P ∗Ne(X
(i)), which can be done by recording the probability

of realizing each component X
(i)
t,k . Though this probability depends on the values of µt, σ2

t ,

N∗(k) and several bookkeeping variables, we denote it here simply by Q(X(i)
t,k). (The function

Q is described in Section 2.3.5). So long as the realization of X(i)
(k) over alleles occurs in the

same order over k (k = 1, 2, . . . , K) for each i, then

P ∗Ne(X
(i)) =

K∏
k=1

T∏
t=0

Q(X(i)
t,k). (2.21)
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2.3.4 Details of M

The fact that we are realizing X(i)
(k)’s one allele at a time requires that we do some extra

bookeeping to keep our importance sampling scheme efficient. Primarily we must avoid

realizing X(i)’s for which PNe(Y,X(i)) = 0. Potential problems arise because by the method

we use to realize values from P ∗Ne(X), Xt,k may only take values between 0 and 2N∗t,k,

inclusive. If 2N∗t,k = 0 at any value of t, then for any s > t, X
(i)
s,k must also be 0. To avoid

situations in which this leads to PNe(Y,X(i)) being zero (like when X
(i)
t,k = 0 and Yt,k > 0)

we introduce the following scheme and additional notation:

δt,k =

{
1 if X

(i)
t,k = 0 implies PNe(Y,X(i)) = 0

0 otherwise

γt,k = min
r<t

2N∗r,k

κt,k = the number of allelic subscripts ` : k < ` ≤ K such that

Yr,` > 0 for at least one r ≥ t (2.22)

Knowing the above quantities, we can define the function M. In the remainder of this

section and in the following one we drop the t and k subscripts for clarity.

At its heart,M is a function that takes an angularly transformed allele frequency, θ, and

transforms that, first to an allele frequency, and then to an allele count. The first difficulty

comes from the bookkeeping described in the preceding paragraph. The second difficulty is

that it is possible θ is not in the interval [0, π/2]. This is taken care of by converting a value

θ outside of [0, π/2] to a value θ∗ which is in the interval [0, π/2]. This is done by reflecting

and translating the value of θ until it is in the interval [0, π/2], and it is done in such a way

that, given the density for θ on (−∞,∞), it is relatively easy to determine the probability

that θ∗ (the reflected and translated version) is within a given interval inside [0, π/2]. More

precisely, this is described in the following: with N∗ and γ positive integers, δ ∈ {0, 1}, and

κ ∈ {0, 1, . . . ,min(2N∗ − δ, γ − δ)}, let M(θ;N∗, δ, γ, κ) : R1 → {δ, . . . ,min(2N∗ − δ, γ −
δ)}×[0, π/2] be the many-to-one map that takes a realization of θ ∈ (−∞,∞) to the ordered

pair (X, θ∗) where X is an integer such that δ ≤ X ≤ min(2N∗ − δ, γ − δ), and θ∗ is a real
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number between 0 and π/2, inclusive. M may be described by the following pseudocode.

We first define the quantities L = sin−1(.5/(2N∗))1/2 and

H =

{
sin−1[(2N∗ − κ + .5)/(2N∗)]1/2 , κ ≥ 1

sin−1[(2N∗ − .5)/(2N∗)]1/2 , κ = 0.

Then,

if (δ = 2N∗ − κ or δ = γ − κ) then θ∗ ←− 0

else if (L ≤ θ < H) then θ∗ ←− θ

else if (θ < L)

and if (δ = 0) then θ∗ ←− θ

else if (δ = 1) then θ[L] ←− 2L− θ (this is reflection around θ = L), and then

if (L ≤ θ[L] < H) then θ∗ ←− θ[L]

else we know θ[L] ≥ H, and we consider the sequence θ[i] = i(L − H) + θ[L],

i = 1, 2, . . ., and we assign θ∗ ←− θ[i∗] where i∗ is the least i such that

L ≤ θ[i] < H. (The sequence θ[i] represents successive translation leftward).

else if (θ ≥ H)

and if (κ = 0) then θ∗ ←− π/2

else if (κ ≥ 1) then θ[H] ←− 2H − θ (this is reflection around θ = H), and then

if (L ≤ θ[H] < H) then θ∗ ←− θ[H]

else we know θ[H] < L and we consider the sequence θ[j] = j(H − L) + θ[H],

j = 1, 2, . . ., and we assign θ∗ ←− θ[j∗] where j∗ is the least j such that

L ≤ θ[j] < H. (The sequence θ[j] represents successive translation rightward).

finally we use θ∗, making the assignment X ←− b2N∗ sin2 θ∗ + .5c

where bxc denotes the largest integer less than or equal to x. The reflections and translations

are depicted graphically in Figure 2.2(a).
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(a) Reflections and Translations
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(b) δ = 1, κ = 1, X(i) = 13

- 4 - 2 2 40

(c) δ = 0, X(i) = 0

- 4 - 2 2 40

(d) κ = 0, X(i) = 2N∗ = 20

Figure 2.2: Figures representing M and Q for N∗ = 10. The normal curve is the density
for θ. (a) Reflections and translations as described in Section 2.3.4. Long-dashed lines
represent the curve after reflection through L or H, while the short-dashed lines represent
the reflected curve after one or more successive translations. (b) If min{2N∗−κ, γ−κ} > δ,
δ = 1, and κ = 1 then X(i) is constrained to be in {1. . . . , 2N∗ − 1}. The shaded regions
correspond to those values of θ for which X(i) = 13 by M. The total shaded area is equal
to Qµ,σ2(X = 13; 10, 1, γ, 1). (c) If δ = 0 then X(i) may take the value zero. The shaded
area shows Qµ,σ2(X = 0; 10, 0, γ, κ). (d) If κ = 0 then X may take the value 2N∗. The
shaded area shows Qµ,σ2(X = 0; 10, δ, γ, 0).
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2.3.5 The probability Qµ,σ2(X = X(i);N∗, δ, γ, κ) of realizing X = X(i)

If θ ∼ N (µ, σ2), and (X, θ∗) = M(θ;N∗, δ, γ, κ), then we denote the marginal probability

that X = X(i) by Qµ,σ2(X = X(i);N∗, δ, γ, κ). The value of Qµ,σ2(X = X(i);N∗, δ, γ, κ) can

be expressed using the notation from the above section. First, Qµ,σ2(X = X(i);N∗, δ, γ, κ) =

0 if X(i) < δ or X(i) > 2N∗ − κ, though such values of X(i) should never occur from M
anyway. Second, there are cases whenM constrains X(i) to be either 0 or 1 with probability

one. Hence if min{2N∗ − κ, γ − κ} = δ then Qµ,σ2(X = δ;N∗, δ, γ, κ) = 1. If, on the other

hand, min{2N∗ − κ, γ − κ} > δ, then for X(i) = 0 and X(i) = 2N∗ we have

Qµ,σ2(X = 0;N∗, 0, γ, κ) = P (−∞ < θ < L)

Qµ,σ2(X = 2N∗;N∗, δ, γ, 0) = P (H ≤ θ <∞)

while for 0 < X(i) < min(2N∗ − κ, γ − κ) we define a = sin−1[(X(i) − .5)/(2N∗)]1/2 and

b = sin−1[(X(i) + .5)/(2N∗)]1/2, and have

Qµ,σ2(X = X(i);N∗, δ, γ, κ) = P (a ≤ θ < b) (2.23)

+ I{δ = 1}P (a ≤ θ[L] < b) + I{κ > 0}P (a ≤ θ[H] < b)

+ I{δ = 1}
∞∑
i=1

P (a ≤ θ[i] < b) + I{κ > 0}
∞∑

j=1

P (a ≤ θ[j] < b)

where I{·} is the indicator function (taking the value 1 if the statement in braces is true, and

0 otherwise) and P (a ≤ θ < b) is the probability that a N (µ, σ2) random variable is between

a and b, namely
∫ b
a (2πσ2)−1/2 exp{[−(θ − µ)2]/(2σ2)}dθ. We compute this probability be

numerical integration in our programs. In practice, the infinite sums are approximated by

summing the first several terms of the series, until the contribution of the next term is very

small (e.g., < .0000001). Values of Q for different values of δ and κ appear as shaded regions

in Figure 2.2(b–d).

This folding and translating might seem to be a very involved process, but it is compu-

tationally much faster than realizing θ from a truncated normal distribution and computing

the probability of X(i) when θ is from such a distribution.
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2.4 Simulated and Real Datasets

The method is demonstrated by computing log-likelihood curves for Ne from three different

datasets. First, to verify that the method gives correct results we apply it to a simple

simulated dataset (dataset 1) for which it is possible to compute the likelihood exactly. This

dataset consists of simulated samples of 100 diploid organisms typed at 20 diallelic loci at

generations 0, 6, and 12, sampled from a Wright-Fisher population of 25 diploid individuals.

This sort of scenario, in which the samples include more individuals than the effective size

of the population, would occur if juvenile samples of a highly fecund species were taken

from a population of small effective size. For each locus, the initial allele frequency in the

population at time zero was an independently drawn uniform real number between 0 and

1. The log-likelihood for Ne given these data was estimated for values between 10 and 52,

in steps of 2, using m = 20,000 realizations of X from P ∗Ne(X) for each locus and each Ne.

A second simulated dataset (dataset 2) shows how the method performs with multiallelic

markers taken from a Wright-Fisher population. The dataset includes three samples of 100

diploids for 12 five-allele loci at generations 0, 4, and 8 from a population of 50 diploids.

The allele frequencies at each locus in generation 0 for these simulations were independently

drawn from a uniform Dirichlet density with five components. For this dataset, the log-

likelihood was computed for values of Ne between 20 and 100 in increments of four using

m = 50,000 realizations of X for each locus and each value of Ne.

Both of these datasets include only one simulated set of data. Because of the compu-

tational time required to compute a likelihood for each dataset having loci with multiple

alleles, it is not possible to find the maximum likelihood estimate for Ne from a great number

of replicate, simulated datasets. Therefore, the following analyses on the simulated datasets

do not serve to assess the bias or the variance of the maximum likelihood estimator for Ne,

but are meant solely to demonstrate that the Monte Carlo importance sampling method is

capable of accurate approximation of the likelihood curve. An assessment of the bias and

variance of the maximum likelihood estimator for Ne was carried out by Williamson and

Slatkin (1999) for data on diallelic loci.

Finally, the method has been applied to data on a population of Drosophila reported in
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Begon et al. (1980). These data were analyzed using F -statistics by Begon et al. (1980)

as well as by Pollak (1983). They observed allele frequencies in three samples at each

of nine enzyme loci. The first two samples were taken a little more than one year apart,

and the third sample was taken some eight months later. Though the natural populations

do not have discrete generations, they have been modeled previously by Begon et al. and

Pollak as populations with discrete generations. Because of the different growth rates of

flies during different seasons, seven generations separate the first two samples, while only

two generations separate the second two samples (Begon et al. 1980). The sample sizes

for all loci were the same, with larger sample sizes taken in the later sampling periods. The

sample sizes were S0 = 190, S7 = 250, and S9 = 335 flies. Pollak (1983) notes that since

Begon et al. (1980) sampled adult flies, their sampling scheme is closer to what is known in

the literature as Sampling Scheme II than it is to Sampling Scheme I. However, as discussed

by Waples (1989) the probability models underlying the two different sampling schemes

are very similar when the actual size of the population is much larger than the effective

size of the population. This is the case with these Drosophila. Begon et al. (1980) report

census sizes in the tens of thousands of flies, while the estimated Ne is orders of magnitude

smaller. Because of this, it is still reasonable to analyze the data using the likelihood method

developed here.

The data appear as allele frequencies in Table 1 of Begon et al. (1980). Unfortunately

the allele frequencies at the Pgm locus are misreported there and fail to sum to one. Thus

only the remaining eight loci were used. Of these eight, three had three alleles, two had four

alleles, two had five alleles and one had six alleles. We evaluated P̃ J
Ne

(Y) at values of Ne

between 200 and 1200 in increments of 50, with two more points (Ne = 425 and Ne = 475)

included near the peak of the likelihood curve. For each point we used m = 500,000

realizations of X.

2.5 Results

For each of the datasets, we were able to use our importance-sampling method to compute

a log-likelihood curve. Using a program written in C, the runs for datasets 1 and 2 each
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took about 10 hours on a laptop computer with a 266 Mhz G3 (Macintosh) processor.

The log-likelihood curves from datasets 1 and 2 appear as solid lines in Figure 2.3. The

estimated 90% confidence intervals around each value of log P̃ J
Ne

(Y) appear as two dashed

lines bordering the log-likelihood curve. Despite the fact that few Monte Carlo replicates

(m = 20,000 and 50,000) were used, the Monte Carlo variance is minimal, as indicated by

the fact that the dotted lines practically lie on top of the estimated log-likelihood curve.

In both cases, the true values of Ne (25 and 50, respectively) are well within two units of

log-likelihood from the maximum likelihood estimates which may be read from the graph as

24 and 56. Since Dataset 1 consists only of diallelic loci, it is possible to compute the exact

log-likelihood curve. This exact curve has been plotted as a dotted line in Figure 2.3(a).

It is impossible to distinguish the exact curve because the Monte Carlo estimate is very

accurate in this case.

The log-likelihood curve computed for the data of Begon et al. (1980) is shown in Fig-

ure 2.4. It took about 54 hours on a desktop computer with a 450 Mhz G4 (Macintosh)

processor to produce the results. As before, the 90% confidence intervals around the Monte

Carlo estimates appear as dotted lines. With this dataset, even with m = 500,000 realiza-

tions of X, the Monte Carlo variance is not negligible. It is, however, small enough that

reliable inferences may be made from the log-likelihood curve. The maximum likelihood

estimate of Ne is 500. Using the values of Ne at which the log-likelihood has decreased two

units from its maximum gives an estimate of a 95% confidence interval for the true Ne.

These points are 250 and 975. By contrast, Pollak (1983), using an F -statistic method,

estimated Ne to be 251 with a standard error of 115. Recomputing Pollak’s estimator, ex-

cluding the Pgm locus (as done in the likelihood analysis), gives the F -statistic estimate of

268 for Ne. The discrepancy between the maximum likelihood estimate and the F -statistic

estimate is discussed in the next section. The present results are not comparable to the Ne

estimated by Begon et al. (1980) because, at the time, those authors were unable to make

a single estimate of Ne using the samples at all three time points.
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(b) Dataset 2

Figure 2.3: Log-likelihood curves estimated by Monte Carlo from datasets 1 and 2. The
values of Ne at which the likelihood was computed are indicated by vertical lines above
the horizontal axis in each figure. The log-likelihood values are connected by a solid line.
Vertical bars intersecting the solid line indicate 90% confidence intervals around log P̃ J

Ne
(Y)

computed using the Monte Carlo variance estimate (2.13). The endpoints of the confidence
intervals are connected by dashed lines. These features are difficult to see because the
confidence intervals around the Monte Carlo estimate of the log-likelihoods are very small.
(In other words, the Monte Carlo estimate of the log-likelihood is very good for these
simulated datasets.) (a) Dataset 1 is simulated data from 20 diallelic loci. (b) Dataset 2 is
simulated data from 12 loci with five alleles each.
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Figure 2.4: Log-likelihood curve from the data of Begon et al. (1980) estimated by Monte
Carlo. The format of the plot is as for Figure 2.3.

2.6 Discussion

As discussed in Williamson and Slatkin (1999), the maximum likelihood estimator of

Ne is less biased and has lower variance than the F -statistic estimator of Ne. In addi-

tion, Williamson and Slatkin (1999) show that formulating the problem in a likelihood

framework allows them to use explicit stochastic models for growing or shrinking popula-

tions. Until now, it was impractical to compute the likelihood for Ne using all the data

when loci with more than two alleles were available. While it has been suggested that one

may bin low-frequency alleles together to turn multiallelic loci into apparently diallelic loci

and then apply exact likelihood calculation methods to such reduced data, this invariably

throws away some information. Furthermore, different binning strategies lead to different

results. Allowing full use of the data, the Monte Carlo likelihood procedure described here

is a preferable way to analyze temporal data on multiallelic loci. The method is suitable

for multiallelic loci such as the microsatellite markers becoming available in a wide variety

of species.

Monte Carlo methods use realizations of random variables to estimate an expectation
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by a sample average. There are a number of ways one can express the likelihood of Ne

as an expectation, and then estimate it by Monte Carlo, but few of those schemes will

be successful, because most will have high Monte Carlo variance. We attempted several

different schemes before settling on the importance sampling method presented here. Al-

though these less sophisticated Monte Carlo estimators produced reasonable estimates in

very small problems, when applied to data involving loci with many alleles these methods

failed to converge reliably, even after many days of computation (unpublished data).

The importance sampling method is successful because the importance sampling func-

tion, P ∗Ne(X), closely resembles PNe(X|Y), the conditional probability of X given Y. This

is achieved by recognizing the hidden Markov chain structure of the problem and using the

forward-backward algorithm of Baum et al. (1970). Doing so gives a Monte Carlo estima-

tor with demonstrably small Monte Carlo variance. Though the computational demands

of this procedure are non-trivial, the reduction in Monte Carlo variance obtained makes it

worthwhile. Nonetheless, it may be possible to improve the estimates by making additional

changes to P ∗Ne(X) so that it more closely resembles PNe(X,Y), especially in the tails of

the distribution. This would further reduce the Monte Carlo variance.

It should be pointed out that while many Monte Carlo problems involving high dimen-

sional random variables like X make use of Markov Chain Monte Carlo (MCMC) methods,

the present method does not. In MCMC, successive realizations are correlated. Yet in this

method each X(i) realized from the distribution P ∗Ne(X) is independent of all the other real-

ized values. In subsequent chapters of the dissertation, however, the nature of the problems

becomes more complex, and developing a similar importance sampling scheme would be

very difficult and complex—even moreso than here.

It is interesting that the maximum likelihood estimate differs so much from the esti-

mate given by Pollak (1983) for the same data. There are differences between the two

estimation methods that must account for the discrepancy. The most notable differences

occur when combining information from multiple samples in time. Consider the fact that a

better estimate of Ne may be made from two samples taken many generations apart than

from two samples separated by fewer generations. Likewise two large samples will yield a

better estimate than two small samples. When there are many samples, the relative infor-
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mation content in different inter-sample intervals will depend on the relative sample sizes

and the number of generations between the samples. By its nature, the maximum likelihood

approach will appropriately weight information from different intervals. In contrast, Pol-

lak’s F -statistic, FKr , neither includes terms for sample size nor interval length between

samples, and N̂Kr , his estimate of Ne based on FKr , includes a term only for the number

of generations between the first and the last sample and is invariant to permutations of the

sample sizes at different times. Since the data from Begon et al. (1980) span sampling

intervals of different lengths and include different sample sizes at different times, differences

between our results and those in Pollak (1983) are not unexpected.

The Monte Carlo variance of our estimate of the likelihood given the data from a natural

population of Drosophila was higher than the variance associated with our estimates from

simulated data. Although a good estimate was achieved after sufficient computation, it may

still be that data generated under a model that differs from the Wright-Fisher model present

difficulty for the Monte Carlo likelihood method. For example, it may be that the effective

size of the natural Drosophila population was different during the two different sampling

intervals.

If desired, one could extend the likelihood framework to allow for Ne changing over

time. For example, if the estimated census size of the population were available and was

known to change over time it would be more sensible to estimate directly the ratio, λ,

of the effective size of the population to the census size of the population. This ratio

would be more useful for the purposes of modeling genetic change in the population than

a single estimate of Ne over the entire time period between the first and last samples. The

forward-backward approach implemented here could easily be modified to accommodate

estimating this parameter, λ. It would also be possible to extend the approach here to

estimate likelihoods from explicit stochastic models of populations of organisms with more

complex life-histories; for example, overlapping generations or age-structured populations.

However, these topics are taken up using MCMC in the following two chapters, where we

will see that it is also preferable to propose a different model for genetic transmission from

one generation to the next.



45

2.7 Extensions and Caveats

Since the time this importance sampling method was first developed, I have experimented

with two refinements. The first involves a logistic approximation to the normal density. In

this modified version, each θt,k is simulated from a logistic distribution (rather than a normal

distribution) with the appropriate mean and variance. Since the cumulative distribution

function of a logistic random variable is available in closed form, it is no longer necessary to

perform the numerical integration required for handling the normal density in (2.23). On

the Begon et al. (1980) dataset, this results in a four-fold decrease in running time per

iteration of the algorithm; however, the logistic distribution is a poorer approximation to

the binomial distribution, and roughly four times as many replicates are required to achieve

the same Monte Carlo variance as achieved with the normal distribution. It appears that

little is to be gained by using the logistic approximation.

A second refinement I have experimented with entails alleles which appear in the early

samples, but not in the later ones. Because of the way the forward step is carried out, the

probability of realizing no copies of such an allele at time T , or any time before, will never

exceed 1/2. It is therefore improbable to realize an X(i) in which such an allele vanishes at

an early time from the population. It is not improbable, however, that such an allele would

be lost quickly from the population under the Wright-Fisher model. This is precisely the

situation in which importance sampling may encounter problems—the realized value X(i)

is improbable under P ∗Ne , but the value of PNe(Y,X(i)) is not commensurately tiny. It is

possible to modify the forward step so it treats alleles which are lost from later samples

more sensibly.

While the above suggestions might improve the importance sampling function to some

degree, after further investigations with the original method I have some general reservations

about the technique presented here. Particularly troubling is the fact that the probability

of realizing a particular X(i) depends on the order of the different alleles (i.e., the order

of the allele labels k = 1, . . . , K. Since only a single ordering of the alleles is used here,

it may be the case that the importance sampling distribution, P ∗Ne(X) is not as close an

approximation to PNe(X|Y) as we would like. This unfortunately, is likely to be a greater
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problem in loci with more alleles, because there are more possible ways to order all those

alleles. Fortunately, the Markov chain Monte Carlo methods of the next two chapters

provide an alternative to the importance sampling method.
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Chapter 3

λ AND A PÓLYA URN MODEL FOR GENETIC INHERITANCE

3.1 Introduction

In the previous chapter, we saw the Wright-Fisher model for genetic inheritance in a

randomly-mating population. This is one of the simplest stochastic models possible for

the transmission of genes between generations without a specified pedigree structure. Un-

der the Wright-Fisher model, the marginal distribution of the number of offspring of an

individual is binomial. Its use in determining the effective size of a natural population in-

volves a considerable degree of abstraction—the many complicated interactions, stochastic

events, and fitness considerations that lead to extra-binomial variance in family size or a

certain rate of increase in inbreeding are presumed to be adequately accounted for by con-

sidering that the natural population can be modeled as a Wright-Fisher population of a

particular size.

Explicitly modeling the many factors influencing inter-generation genetic dynamics in a

natural population would be very challenging. Fortunately, for many natural populations,

the Wright-Fisher population of size Ne provides an admirable approximation. However,

when data are available on the census size, C, of a population, biologists are often interested

in estimating the ratio of effective size to census size, Ne/C, which we shall denote λ. Pursu-

ing likelihood or Bayesian inference for λ while strictly adhering to the Wright-Fisher model

requires a somewhat inelegant interpretation of population size and leads to difficulties in

applying Markov chain Monte Carlo methods to the problem. Namely, the probability of

the unobserved allele counts in the population is not well-defined for different values of λ

under the Wright-Fisher model. For this reason, I propose a new model for genetic inher-

itance based on an urn sampling scheme with stochastic replacements. Given the census

size of a breeding population, this model has a single parameter, s, which can change the
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effective size of the population, without altering the number of individuals in that popula-

tion. This provides several advantages in the inference problems pursued here, simplifying

the interpretation of the modeled process and the computation necessary for estimating λ.

Results from this model, however, may be easily translated back to an interpretation from

within the familiar Wright-Fisher perspective.

In this chapter I will briefly describe the Wright-Fisher based model for estimating λ, and

a single-site-updating scheme for a Markov chain Monte Carlo (MCMC) algorithm suitable

for approximating likelihood ratios or posterior probabilities for λ. I will then illustrate the

shortcomings of the Wright-Fisher model in this context. This motivates the development

in Section 3.3 of the urn model. I devote Section 3.4 to alternative interpretations and

developments of the urn model which provide a wider range of biological interpretations for

it. In Section 3.5, I derive expressions for the inbreeding and variance effective sizes of the

urn-model population, investigate probabilities of allele fixation in the urn model, and show

the relationship between census sizes Ct through time, the parameter of the urn model, s,

and the parameter λ. In Section 3.6, I argue that in terms of allele fixation probabililities the

Wright-Fisher model corresponds to possibly unrealistic assumptions about the distribution

of family sizes. Finally, I briefly describe the use of the urn model to develop a simple MCMC

scheme for Bayesian inference of λ. I apply this to the data of Begon et al. (1980) from

the preceding chapter. Elaborations on this MCMC method involving different sampling

times and schemes, and different life-histories, are presented in the following chapter.

3.2 Estimating the Ratio of Effective to Census Population Size

In this section, I consider the scenario in which census sizes of breeding adults have been

recorded each generation over some time period in a semelparous population with discrete

generations and genetic samples are taken with replacement at some intervals of time either

from those breeding adults or from the juveniles descended from them (other sampling

models will be entertained in the following chapter). Much of this treatment is adapted

from Anderson and Thompson (1999).

At generation t, Ct diploid individuals reproduce, giving rise to Ct+1 individuals at
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generation t + 1. We take genetic samples of size S0, . . . , ST (assume S0 > 0, ST > 0)

individuals, and find counts of the K different allelic types at a locus, Y = (Y 0, . . . ,Y T )

where Y t = (Yt,1, . . . , Yt,K). For estimating λ the population at t is modelled as bλCtc
ideally-reproducing (i.e., via a Wright-Fisher inheritance model) adults, where bxc is the

largest integer ≤ x. Underlying the data are latent allele counts X = (X0, . . . ,XT ) with

Xt = (Xt,1, . . . , Xt,K). {Xt, t ≥ 0} is a first-order Markov chain with transition proba-

bilities Pλ(Xt+1|Xt) being multinomial with cell probabilities Xt/b2λCtc and number of

trials b2λCt+1c. The genetic data at time t are assumed to be samples from the gamete

pool produced by the bλCtc adults. This assumption is equivalent to sampling adults with

replacement, and closely approximates the sampling of juveniles, when the number of juve-

niles is large. Hence, for St > 0, Pλ(Y t|X) = Pλ(Y t|Xt) is multinomial with parameters

Xt/b2λCtc and 2St. For St = 0, Pλ(Y t|Xt) ≡ 1. Summing out the nuisance parameters

X0 over a uniform prior Pλ(X0) gives the likelihood

L(λ) = Pλ(Y) =
∑
X

Pλ(Y,X) (3.1)

=
∑

X0,...,XT

Pλ(X0)Pλ(Y 0|X0)
T∏

t=1

Pλ(Xt|Xt−1)Pλ(Y t|Xt).

With K = 2, the sum over X may be evaluated exactly. With larger K, however, the huge

space of possible Xt’s makes this infeasible.

3.2.1 MCMC likelihood for λ

To obtain an efficient Monte Carlo estimate of L(λ), one may consider the likelihood ratios

L(λ)/L(λ0), (Thompson and Guo 1991; Geyer and Thompson 1992)

L(λ)
L(λ0)

=
Pλ(Y)
Pλ0(Y)

=
∑
X

Pλ(Y,X)
Pλ0(Y,X)

Pλ0(Y|X) = Eλ0

(
Pλ(Y,X)
Pλ0(Y,X)

∣∣∣∣Y) (3.2)

which may be estimated by 1
m

∑m
i=1 Pλ(Y,X(i))/Pλ0(Y,X(i)) where each X(i) is realized

from Pλ0(X|Y). This is an efficient Monte Carlo estimator of the likelihood ratio pro-

vided λ is near to λ0. Independent samples of X are not available because Pλ0(X|Y) is

known only up to scale. Instead, values of X(i) can be realized from a Markov chain with
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limit distribution Pλ0(X|Y) using a component-wise Metropolis-Hastings algorithm (Hast-

ings 1970): Start with initial values of X; Select a pair (Xt,k, Xt,`), k 6= ` at random from

X; Propose updating the pair to (X∗t,k, X
∗
t,`) = (Xt,k − w, Xt,` + w), where w is a ran-

dom integer drawn with probability q(w|Xt,k, Xt,`); accept the proposal with probability

min{1, [q(−w|X∗t.k, X∗t,`)Pλ0(Y,X∗)]/[q(w|Xt,k, Xt,`)Pλ0(Y,X)]}. After initial updates for

burn-in, X(i)’s are sampled as the state of X at a spacing of u updates.

When estimating a curve for L(λ), the range of λ’s of interest may be large. In such a

case it does not suffice to realize X(i)’s under a single λ0. Instead, one must sample from

several chains, each indexed by a different λ0, λ0 ∈ Λ. Geyer (1994) describes a reverse

logistic regression method for reweighting the samples from each chain and estimating the

whole likelihood surface.

3.2.2 A Bayesian approach

The MCMC sampler described above is useful for Bayesian inference of λ as well. Suppose

that we are interested in computing the posterior probabilities for each λ ∈ Λ. Let P (λ) be

the prior distribution for λ assigning probability mass to each of the discrete points λ ∈ Λ.

We shall assume for brevity and simplicity that
∑

λ∈Λ P (λ) = 1. It is possible to also propose

changes to λ in the MCMC sampler, and thereby sample from the posterior distribution

of λ by the following scheme: given the current state of the chain, (X, λ), propose a new

value λ∗ with probability h(λ∗|λ) from the proposal distribution h(·|λ). Then, accept the

proposal with probability

min
{

1,
h(λ|λ∗)
h(λ∗|λ)

P (λ∗)
P (λ)

Pλ∗(Y,X)
Pλ(Y,X)

}
The successive values λ(i) generated in this way are a dependent sample from P (λ|Y) and

may accordingly be used to estimate that posterior distribution.

3.2.3 Shortcomings of the Wright-Fisher model in this case

The first difficulty in using the Wright-Fisher model to formulate the likelihood given in (3.1)

is the dependence of the sampling terms Pλ(Y t|Xt) on λ. The parameter λ is supposed to

affect the transitions Pλ(Xt+1|Xt), so it is inelegant to also have the dependence appear in
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Pλ(Y t|Xt). This dependence results from the fact that a given allele count Xt,k corresponds

to a different allele frequency depending on the value of λ. Since the likelihood is the sum

over all X, this dependence has little real effect, but its presence is enough to cause people

to take pause1.

The undesireable effect of this dependence becomes even more clear when one consid-

ers the possibility of sampling adults without replacement before reproduction—Sampling

Plan II of Nei and Tajima (1981), also described in Waples (1989). Under such sampling,

in the context of a population with very high variance in family size, it is possible that

the effective size estimated for a population could be smaller than the number of adults

sampled without replacement from the population modeled as a Wright-Fisher population.

While this presents no problem conceptually—it is quite possible that the effective size of

a population may be smaller than the number of individuals sampled from it—it exposes

how difficult it would be to correctly model Sampling Scheme II within the MCMC scheme

of the previous chapter. Trying to explicitly model sampling of adults without replace-

ment in the above model becomes difficult because Xt is affected by the sampling process,

and the degree to which it is affected depends not on bλCtc but on Ct itself. Suffice it to

say that pursuing the explicit modeling of Sampling Scheme II within the context of the

Wright-Fisher model of genetic inheritance, while possible, would not be straightforward.

A further shortcoming of the Wright-Fisher model is even more practically problematic—

different values of λ imply different sizes of the state space of the latent variable X, and

this makes the computation of L(λ)/L(λ0) or of P (λ|Y) more difficult and less efficient.

Consider first the computation of L(λ)/L(λ0) using the identity (3.2). This identity only

holds when the support of X under λ0 is equal to or contains the support of X under λ.

This only transpires when λ0 > λ, since if λ > λ0, it is possible that a value of X for which

Pλ(Y,X) > 0 might include a t for which
∑K−1

k=1 Xt,k > b2λ0Ctc, and hence Pλ0(Y,X)

would be zero. As a consequence, the importance sampling algorithm implied by (3.2)

can be employed only for λ0 > λ. This is inefficient because it is not possible to use the

realizations generated at values of λ0 < λ to estimate L(λ)/L(λ0). It should be pointed out

1The audience at the 2000 PMMB short course in Berkeley apparently found this unwanted dependence
to be worrying when Elizabeth presented this work.
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that a similar problem would occur with the importance sampling method of the previous

chapter if one tried to combine the realizations from P ∗Ne(X) with realizations from another

distribution, say P ∗Ne0(X) (Ne0 < Ne) to estimate the likelihood at Ne.

Additionally, it is not immediately clear how best to compute Pλ(Y,X(i))/Pλ0(Y,X(i))

even when λ0 > λ. It is easy to compute Pλ0(Y,X(i)), but not so for Pλ(Y,X(i)) when

λ 6= λ0. One approach we have used is to “let the last allele at each locus take up the slack.”

In other words, when X(i) has been simulated from a chain under λ0, then Pλ(Y,X(i)) is

computed by replacing each component, X(i)
t , of X(i) with a new vector differing in the

number of alleles subscripted by K. That is, the new vector is (X(i)
t,1 , . . . , X

(i)
t,K−1, X

(i)
t,K −

b2λ0Ctc+ b2λCtc). While this sort of scheme seems to work reasonably well in practice, the

quantity Pλ(Y,X(i))/Pλ0(Y,X(i)) computed in this way is not invariant to permutations

of the order of alleles, and so it is unattractive. Since the ratio Pλ∗(Y,X)/Pλ(Y,X) must

also be computed for the Bayesian approach to estimating λ described above, this problem

also plagues the Bayesian approach using the Wright-Fisher model.

In short, to compute the likelihood or the posterior distribution for λ using MCMC, it

is desirable to be able to propose a reasonable model under which changes in the value of λ

do not change the size of the state space of X. Such a model is derived in the next section.

3.3 The Urn Model

From the preceding section, it should be clear that we desire a model of genetic inheritance

that allows a population of effective size Ne, but census size C, to give rise to a new

generation with genetic dynamics (increase in allele frequency variance, inbreeding, etc.)

characteristic of a Wright-Fisher population of size Ne. The important, and more difficult

part, is that we require doing this without modeling the population as having any size other

than C. If our primary concern was that of matching the increase in allele frequency, we

would seek a genetic inheritance model with the same number of individuals that we observe

in the census, but with an increased variance in progeny allele frequency. An obvious way to

do this would be to allow allele frequency in the following generation to follow a scaled beta-

binomial distribution, rather than a scaled binomial distribution, because the beta-binomial
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is a classical discrete distribution with extra-binomial variance. While such a distribution

is convenient from the perspective of allele frequency, it is also the case that it arises from

a system of mating that we can specify in terms of a sampling process on individual gene

copies. In this section I will describe an urn sampling scheme from which it arises. In

Section 3.4 I will describe another genesis of the same distribution.

Let us consider intergenerational sampling from generation 1, with C1 reproductive

adults, to their offspring who become C2 reproductive adults. Let there be K alleles,

indexed by i, with numbers of each at time 1 given by ni (
∑K

i=1 ni = 2C1) and at time 2

by xi (
∑K

i=1 xi = 2C2). By our urn scheme, the alleles in generation 2 are drawn by the

following scheme: a gene copy is drawn at random from those present in generation 1, and a

copy of it is placed in generation 2. Then the original gene copy is returned to generation 1,

along with s new copies of it. This defines a multivariate Pólya-Eggenberger urn scheme

(Johnson and Kotz 1977), where the genes of different allelic type may be regarded as

balls of different color. By this scheme, X = (X1, . . . , XK), conditional on the ni, follows

the compound multinomial Dirichlet distribution, which is a multivariate generalization of

the well-known beta-binomial distribution (Johnson et al. 1997).

The compound multinomial distribution with 2C2 trials arises as the marginal distribu-

tion of X from the hierarchy

Q ∼ Dirichlet(α1, . . . , αK)

X|Q ∼ MultK(2C2,Q),

and has the probability mass function

P (X|2C2;α1, . . . , αK) =
(2C2)! Γ(α•)
Γ(2C2 + α•)

K∏
i=1

(
Γ(Xi + αi)
Xi! Γ(αi)

)
(3.3)

where Γ(y) =
∫∞

0 ty−1e−tdt is the gamma function, α• =
∑K

i=1 αi, and, as before
∑K

i=1 xi =

2C2. For the urn sampling scheme described above, X has p.m.f (3.3) with αi = ni/s,

i = 1, . . . , K.

Conceptually, it is apparent that s plays an important role in determining the variance

in family size in this urn-model for genetic inheritance. If s = 0 we have sampling with
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replacement—the fundamental feature of the Wright-Fisher model. However, if s > 0 then

each time a gene copy in generation 1 is selected to produce a daughter in generation 2,

the probability is increased that that particular gene copy will have more daughters (and

the probability is increased that other individuals will have fewer daughters). So, when

s > 0 the variance in offspring number is increased (and the effective size of the population

is thus decreased). The situation of s < 0 corresponds to an effective size which is larger

than the census size of the population, as is sometimes achieved by a prescribed system

of breeding in captive populations. s = −1 is hypergeometic sampling of gene copies into

the next generation. In an urn-model population of constant size, this would correspond to

every gene copy being copied exactly one time into the next generation. In the remainder

of this chapter, however, we will concentrate on cases of s ≥ 0. Though this model was

developed, conceptually, in terms of stochastic replacements that were in integer units of

gene copies, there is no mathematical restriction that s be an integer; non-integer values for

s are permissible.

It is possible to derive standard results about the increase of allele frequency variance

and the probability of identity by descent from a generation of genetic sampling via this urn

model. This will be done in Section 3.5. These calculations are simplified by the fact that

the marginal distribution of the ith component in the compound multinomial distribution

has a beta-binomial distribution with parameters 2C2, α1 and α• − αi. Thus it has p.m.f.

P (Xi|2C2;α1, . . . , αK) = P (Xi|2C2;αi, α• − αi)

=
(2C2)! Γ(α•)
Γ(2C2 + α•)

× Γ(Xi + αi)
Xi! Γ(αi)

×

Γ(2C2 −Xi + α• − αi)
(2C2 −Xi)! Γ(α• − αi)

(3.4)

and first two central moments

EXi = 2C2
αi

α•
(3.5)

Var(Xi) = 2C2

(
2C2 + α•
1 + α•

)(
αi

α•

)(
α• − αi

α•

)
. (3.6)

Any two components of a compound multinomial distribution are correlated, having covari-
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ance

Cov(Xi, Xj) = 2C2

(
2C2 + α•
1 + α•

)(
αi

α•

)(
αj

α•

)
.

Derivation of the preceding results may be found in Johnson et al. (1997, pg. 81,82), where

the authors also point out that the variance-covariance matrix for a compound multinomial

random variable can be written as the product of (2C2 + α•)/(1 + α•) and the variance

covariance matrix for a multinomial random variable with 2C2 trials and cell probabilities

of αi/α•, i = 1, . . . , K.

3.4 Other Interpretations of the Urn Model

The urn model described above is a special case of more general classes of genetic inheritance

models. Recognizing this provides us with a better idea of why this model might be suitable

from a biological perspective, and will help in the analysis of fixation probabilities later in

the chapter.

First, this urn model is a special case of a conditional branching process model. In

such a model, each gene in a population independently produces a random number k of

offspring, with k following the same distribution for each gene. The final result, in the

following generation, however, is made conditional upon the population size at that time

being C2 diploids. By this conditioning, the numbers of offspring of each gene are no

longer independent, but they are still exchangeable. This type of model was introduced by

(Moran and Watterson 1958), and studied in great detail by Karlin and McGregor

(1965). The urn model corresponds to a conditional branching process model in which

offspring number has the negative binomial distribution, a versatile distribution which has

been previously employed to model the distribution of family sizes (Rao et al. 1973).

The negative binomial probability mass function may be parameterized in terms of α

and β, shape and scale parameters, respectively, analogous to the parameters of a gamma

distribution. The pmf of a NegBin(α, β) rv is

P (X|α, β) =
(

Γ(X + α)
Γ(X + 1)Γ(α)

)(
1

β + 1

)α( β

β + 1

)X

.

Further, if X1 and X2 have negative binomial distributions with common scale β and shape
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parameters α1 and α2, then their sum has a NegBin(α1 +α2, β) distribution. This, and the

fact that the ratio of a negative binomial variable with a sum of itself and other independent

negative binomial variables with common scale is a beta-binomial random variable, makes it

easy to verify that the conditional branching process model with negative binomial offspring

distribution is the same as the urn model.

Another general class of models, which I call “two-stage” models may be formulated as

follows:

1. Let there be C1 diploids in the current generation

2. Form a gamete (or juvenile) pool in which the ith gene copy (i = 1, . . . , 2C1) is

represented by Hi copies of itself, where Hi is a random number drawn from some

distribution PH , and where PH is the same for all i.

3. Sample 2C2 gametes with replacement from the gamete pool to form the next gener-

ation.

This model will behave differently according to the type of distribution and the parameters

specified for PH .

When PH is chosen to be a gamma distribution, Gamma(α, β), the two-stage model is

identical to the urn model described in the previous section. This is so because the ratio of a

gamma random variable to a sum of itself and other independent gamma random variables

with the same scale parameter is a beta random variable. This relation generalizes to the

multivariate case: if Y1, . . . , YK follow independent gamma distributions, each with their

own shape parameter αi, but all with the same scale parameter, then

Q =
(

Y1

Y1 + · · ·+ YK
, . . . ,

YK

Y1 + · · ·+ YK

)
is a Dirichlet random vector with parameters (α1, . . . , αK). Knowing this, it is straightfor-

ward to verify that the urn model with parameter s is identical to the two-stage model with

PH being a gamma distribution with shape parameter α = 1/s, and arbitrary scale.

The gamma distribution might seem a poor choice for the number of gametes produced

by a gene, since this will yield non-integer values for the number of gametes. However, the
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mathematical tractability achieved by using a continuous distribution for gamete number is

substantial. Further, the gamma distribution is a continuous analogue which closely resem-

bles the negative binomial distribution. Obviously, the continuous approximation will be

better when the scale is larger, as will be the case with organisms that produce many off-

spring. Nonetheless, even with fairly small offspring number, the continuous approximation

is good.

If we allow that the urn model is a good approximation to the two-stage model with

negative binomial gamete numbers, then we have yet another interpretation of the model

owing to the genesis of the negative binomial as a gamma-weighted mixture of Poisson

random variables. That is, if φ ∼ Gamma(α, β) and H ∼ Poisson(φ), then, marginally

H ∼ NegBin(α, β). Therefore, another biologically reasonable interpretation of the urn

model is that the number of offspring copies of a gene surviving to childhood follows a

Poisson distribution; however, there is heterogeneity in the population, so that the expected

number of offspring surviving to childhood varies randomly across the pool of parental gene

copies, following a gamma distribution. Children are then chosen randomly (and with

replacement) to survive to adulthood. So long as the number of juveniles is large, sampling

with replacement is a reasonable approximation to the actual hypergeometric sampling that

would actually transpire.

3.5 Comparison to the Wright-Fisher Model

For different values of C1, C2, and s, how does this model compare to the Wright Fisher

model? In this section we investigate some fundamental quantities in the urn model: vari-

ance in offspring number, probability of identity by descent, and allele frequency variance.

From these calculations, it is possible to derive the inbreeding and variance effective sizes of

ideal populations reproducing via the urn model. I also investigate the probability of allele

fixation in these models, and finally describe how one may relate the stochastic replacement

quantity s in a population of changing census size over time, to the quantity λ.
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3.5.1 Offspring number

The expected number of offspring copies of a parental gene may be computed simply from

(3.5). We consider an urn model in which one ball (gene copy) is white and the other

2C1 − 1 balls are black. The expected number of offspring genes of a single gene copy is

then the expected number of white balls obtained when 2C2 total balls are drawn in our

urn sampling scheme. In this case ni = 1, so αi = 1/s and α• = 2C1/s. So the expected

number of offspring genes is

E(# of offspring of a single gene) = 2C2 ·
1/s

2C1/s
=

C2

C1
. (3.7)

Note that this is the same expectation that one would get for Wright-Fisher sampling (s=0)

in a population of changing size.

The variance in offspring number is obtained by substituting the proper expressions into

(3.6), giving

Var(# of offspring of a single gene) =
2C2

(
2C2 + 2C1

s

)(
1
s

)(
2C1−1

s

)
(

1 + 2C1
s

)(
2C1
s

)2 .

=
C2

C1
· 2C1 + 2C2s− 1− sC2/C1

2C1 + s
(3.8)

It is instructive to notice that in the case of C1 = C2 = C this reduces to

Variance of offspring number =
(

1− 1
2C

)(
s + 1

1 + s
2C

)
which is precisely the variance in offspring number in a Wright-Fisher population, inflated

by the factor 2C(s + 1)/(2C + s). Thus, if s = 0, we obtain the Wright-Fisher variance in

offspring number, as we ought to.

3.5.2 Identity by descent

We may similarly determine the probability that a randomly chosen pair of gene copies

drawn from the 2C2 gene copies of generation 2 are identical by descent (IBD), i.e., they

are both copies of a single gene copy in generation 1. Let the random variable Xj denote the
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number of offspring of a single, specific, gene copy, say the jth gene copy, in generation 1.

Conditional on Xj = xj , the probability that a pair drawn from generation 2 is IBD and

that both members of the pair are copies of the jth gene in generation 1 is ( xj
2C2

)( xj−1
2C2−1).

Therefore, the probability that a pair is IBD and are copies of the jth gene may be written

as

P (IBD and copies of gene j) =
2C2∑
xj=1

(
xj

2C2

)(
xj − 1

2C2 − 1

)
P (Xj = xj),

where P (Xj = xj) is, as given in (3.4), the beta-binomial probability of gene offspring

number. This may be rewritten as

=
(

1
2C2(2C2 − 1)

) 2C2∑
xj=1

(x2
j − xj)P (Xj = xj)

=
(

1
2C2(2C2 − 1)

)(
Var(Xj) + (EXj)2 − EXj

)
(3.9)

which, upon substituting expressions (3.7) and (3.8) for the mean and the variance, and

factoring out a factor of C2/C1 simplifies to

=
1

2C1(2C2 − 1)

(2C1 + 2C2s− 1− sC2
C1

2C1 + s
+

C2

C1
− 1
)

=
1

2C1(2C2 − 1)

((2C2 − C2
C1
− 1)s− 1

2C1 + s
+

C2

C1

)
. (3.10)

Equation 3.10 gives the probability that a randomly drawn pair is IBD and both are

copies of a particular gene j. Since the events of being copies of a particular gene j and

copies of a gene k are disjoint for j 6= k, the probability of IBD may be found by summing

(3.10) over j from 1 to 2C1, and so

P (IBD) =
1

2C2 − 1

((2C2 − C2
C1
− 1)s− 1

2C1 + s
+

C2

C1

)
. (3.11)

It is once again instructive to consider the case s = 0, in which the above expression simplifies

to 1/(2C1). This does not depend at all on C2, which is true with Wright-Fisher sampling.

With respect to inbreeding in the Wright-Fisher model, it does not matter how much a

population has grown over the past generation; what counts is how small the population

was in the parental generation. The same is not true in the urn model with s 6= 0. This
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results from the fact that the relative effect of s depends on how many gene copies are

initially in the urn and how many are drawn from it.

If the urn-model population were of constant size C (C1 = C2 = C), then (3.11) reduces

to

P (IBD) =
s + 1

2C + s
.

Thus, for an urn-model population of constant size C to have an inbreeding effective size of

Ne, s would have to be chosen so that

s =
2C − 2Ne

2Ne − 1
. (3.12)

3.5.3 Allele frequency variance

We can consider an allele of type “i” which is present in ni copies out of the 2C1 gene copies

of generation 1. The number of copies of allelic type i in the 2C2 gene copies of the following

generation is then the random variable Xi. Substituting the appropriate quantities for α•

and αi into (3.6) gives

Var(Xi) =
2C2

(
2C2 + 2C1

s

)(
ni
s

)(
2C1−ni

s

)
(

2C1
s

)2(
1 + 2C1

s

) (3.13)

=
2C2

4C2
1

· ni(2C1 − ni)
2C1/s + 2C2

2C1/s + 1
. (3.14)

Hence the corresponding allele frequency, Xi/(2C2) will have variance which is 1/(4C2
2 ) of

the expression in (3.14). Denoting ni/(2C1) by p, we may write

Var
(

Xi

2C2

)
=

p(1− p)
2C2

(
2C1 + 2C2s

2C1 + s

)
. (3.15)

Once again, with s = 0 we have the binomial variance of the Wright-Fisher model. Also,

it is clear from (3.15) that for s > 0 the allele frequency variance is inflated over that of

a Wright-Fisher population of size C2. The magnitude of the effect of s depends on the

relative and absolute sizes of C1 and C2. With C1 = C2 = C (3.15) reduces to

Var
(

Xi

2C

)
= p(1− p)

1 + s

2C + s
.
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This means that for an urn-model population of constant size C to have a variance effective

size of Ne, s would be

s =
2C − 2Ne

2Ne − 1
, (3.16)

the same as (3.12).

3.5.4 Probability of allele fixation in one generation

So far, we have seen that both the inbreeding and variance effective sizes of an urn-model

population of constant size C are Ne when s is chosen to be (2C − 2Ne)/(2Ne − 1). Given

this, it is tempting to imagine that the eigenvalue effective size (Ewens 1979) in an urn

model population of size C will be the same as that in a Wright-Fisher population of size Ne

when s = (2C − 2Ne)/(2Ne− 1). The eigenvalue effective size is the size of a Wright-Fisher

population with the same largest non-unit eigenvalue of its transition probability matrix,

and it determines the rate of loss of rare alleles over time in the population. I have not

yet computed the eigenvalue effective size of this urn model. Such an analysis should not

be difficult, however, as this urn model is an exchangeable model in the sense of Ewens

(1979, p. 77), and so the general theory of Cannings (1974) for computing eigenvalues as

the expected value of products of offspring numbers should hold. I have not yet pursued

this, as I am primarily interested in the application of this urn model to inference problems.

Nonetheless, future work along this line might permit some analytical results of the model

to be obtained directly from the earlier work of Karlin and McGregor (1965).

However, I have performed some related numerical investigations. Rather than deter-

mining the eigenvalue effective size of the population, directly, I have calculated, for the

Wright-Fisher model and the urn model, the probability that an allele is lost or becomes

fixed in a single generation. This quantity will be related to the eigenvalue effective size, and

is simpler to compute. These numerical investigations (using the probabilities of the zero

class computed from Equation 3.4 and from the binomial distribution) show that the prob-

ability of allele fixation in a single generation of reproduction in an urn model population

of census size C and variance effective size Ne < C is always smaller than the probability

of allele fixation in a single generation in Wright-Fisher population of size Ne. An example
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Figure 3.1: Probability that an allele at frequency .025 is lost from a population in a single
generation of reproduction. Crosses show the single-generation fixation probabilitities for a
Wright-Fisher population of size given on the horizontal axis. Filled circles show the single-
generation fixation probabilities for an urn model population with census size C = 100 and
variance effective size given on the horizontal axis. As is apparent, rare alleles are more
likely to be lost in a single generation from a Wright-Fisher population of size Ne than from
an urn model population of variance effective size Ne.

of this is given in Figure 3.1 which shows the probability of allele loss for different values

of the variance effective size. Dots are plotted for the probability that an allele found in

five copies in an urn-model population of size 100 diploids is lost in the next generation.

Plotted on the same graph are crosses showing the probability that an allele at frequency

5/200 = .025 is lost in one generation of Wright-Fisher sampling in a population of the

same variance effective sizes. It is apparent from the figure that the single-generation fix-

ation probabilities are much higher in the Wright-Fisher model. For example, with λ = .3

(Ne = 30 in the graph), it is three times more probable that zero copies of an allele will

appear in the following generation in the Wright-Fisher population than in the urn-model

population.

It might seem unfortunate that the urn-model population does not correspond closely

to the Wright-Fisher population in terms of single-generation allele fixation probabilities. I

argue, however, that this results from a deficiency of the Wright-Fisher model, rather than

an “inaccuracy” in the urn model I have proposed. To some extent the discrepancy must be

due to the fact that in a Wright-Fisher population of size Ne, there are only 2Ne +1 possible
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values for the number of copies of any one allele, as opposed to 2C +1 possible values in an

urn model population. The implication of this is that in an urn-model population, alleles

may persist at lower frequencies than would be allowed in a Wright-Fisher population. Since

almost all natural populations have census sizes which are larger than their effective sizes,

alleles in those natural populations may survive at lower frequencies than would be allowed

in a Wright-Fisher population of comparable variance or inbreeding effective size. In other

words, modeling a population by a Wright-Fisher model of comparable variance effective

size will, in almost all cases, lead one to overestimate the probability that an allele is lost

from the population. I devote Section 3.6 to this topic.

3.5.5 Comparable λ

If census sizes are known, C0, . . . , CT , and we want to find an urn model that is comparable

to one in which the reproduction is like a Wright-Fisher population with effective sizes

bλC0c, . . . , bλCT c, then we can define stochastic replacements st for each pool of Ct adults,

t = 1, . . . , T . In this, we shall make our main concern that of matching the increase in allele

frequency variance. In a generation of Wright-Fisher sampling from a gamete pool with

allele frequency p and drawing b2λCtc gene copies, the variance will be p(1 − p)/b2λCtc.
Setting this equal to the allele frequency variance derived for the urn model (3.15), and

changing C1 and C2 to Ct−1 and Ct, respectively, gives

p(1− p)
b2λCtc

=
p(1− p)

2Ct

(
2Ct−1 + 2Cts

2Ct−1 + s

)
.

Then, disregarding the floor function, which resulted from a discretization imposed by

adherence to the Wright-Fisher model, this may be solved for s, giving

st =
2Ct−1(1− λ)

2λCt − 1
, t = 1, . . . , T. (3.17)

This will form the basis for making inference about λ using the urn model.

3.6 Allele Fixation in Population-Genetic Models

In 3.5.4 we saw that an urn model with a given variance effective size has a much smaller

probability of allele loss in one generation than the corresponding Wright-Fisher model.
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The purpose of this section is to demonstrate that the probability of fixation in a single

generation of reproduction in a Wright-Fisher model of size Ne is probably too high for a

natural population of variance effective size Ne. This is done indirectly, by showing that

the two-stage model (Section 3.4), even under an extreme assumption about PH , exhibits

single-generation fixation probabilities for a given variance effective size that are lower than

those in the Wright-Fisher model.

The argument proceeds as follows: let PH belong to C, the class of distributions with

compact support on non-negative values. This corresponds to individuals having some

maximum number Omax of offspring that may survive to the gamete stage in the two-

stage model. The urn model can approximately fit into this scheme if we define the scale

parameter of the corresponding gamma distribution to be small enough that the probability

that offspring number is greater than Omax is very small. Within this class, one may

have discrete or continuous, unimodal or multimodal distributions, etc. Through computer

simulations, I have found that, for a given variance effective size, the PH ∈ C that gives rise

to the largest probability of allele fixation in a single generation of reproduction seems to be

the scaled Bernoulli distribution—with probability p an individual has Omax offspring, and

with probability 1−p it has zero offspring. (Of course, the value of Omax is irrelevant in this

case and may be set to unity without loss of generality.) I have not yet tried seriously to prove

that PH ∼ Bernoulli gives the maximum single-generation fixation probability for a two-

stage model of given variance effective size, but a proof should be possible. The probability

of fixation in a Wright-Fisher model of size Ne however, is still always greater than that in

the two-stage model with PH ∼ Bernoulli(p) for given variance effective size (which depends

on p). An example of this appears in Figure 3.2, which is similar to Figure 3.1, except that

it includes a series of dots for the two-stage model with Bernoulli offspring distribution.

Figure 3.1 shows us that the probability of allele loss in a single generation in a Wright-

Fisher model exceeds that of a two stage model with Bernoulli offspring number distribution

for all variance effective sizes. This suggests that using a Wright-Fisher model of size Nev

to calculate the probability of allele extinction in one generation in a natural population

of census size C and estimated variance effective size Nev will likely overestimate that

probability. This is apparent, because the single-generaton fixation probability calculated
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Figure 3.2: Probabilities that an allele at frequency .025 is lost in one generation of re-
production as a function of variance effective size under three different models of genetic
inheritance. The dashed line is for a Wright-Fisher model of size Ne. The solid line is for
an urn model of size 100, with s set to obtain the corresponding variance effective size. The
dots are simulation results using a two-stage model in a population of size 100 adults with
PH ∼ Bernoulli(p). The parameter p increases from .04 to 1.0, from left to right in the
figure—higher values of p give rise to higher variance effective sizes.

from a Wright-Fisher model is greater than that for any two-stage model of census size C.

The degree to which the single-generation probability of allele fixation computed from a

Wright-Fisher model of size Nev overestimates the true fixation probability depends on the

actual distribution of offspring numbers in the natural population. If the natural population

is one in which a few individuals have many offspring, and the rest have zero, then the

Wright-Fisher model will not be grossly inaccurate. If, however, the population is one in

which the distribution of offspring number is not bimodal (for example if the distribution of

offspring number is shaped like the negative binomial distribution), then the Wright-Fisher

model of size Nev will poorly represent that natural population in terms of the rate of loss of

rare alleles. In such a case, the urn model will provide a much more faithful representation.

While the former scenario may be appropriate for organisms in which families all live or die

together on the basis of some environmental factors, it seems unlikely that it would apply

well to many species.

Finally, these concerns are important from an inference perspective. In making likelihood
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inference about effective size, the information in fixation probability is used (since one makes

full use of the entire distribution of allele counts—not just their variance). As a result, for

most natural populations, using a likelihood derived from the Wright-Fisher model will yield

an estimate of effective size which is larger than the estimate that would be obtained under

a likelihood model based on the urn-sampling scheme using an estimate of the census size

of the population (as described in the following section). Such an effect, however, is quite

small, as we see below.

3.7 MCMC for Bayesian Estimation Under this Urn Model

The urn model allows easier implementation of the sampler described in Section 3.2.2 for

Bayesian inference of λ. The formulation still follows directly from Sections 3.2.1 and 3.2.2 as

presented, but with the definition of Pλ(Xt,Xt−1) made in terms of transition probabilities

dictated by the urn model with a stochastic replacement corresponding to a particular value

of λ and the observed census sizes. Thus, for a particular value of λ and the census sizes

Ct−1 and Ct at times t− 1 and t, Pλ(Xt|Xt−1) is written in terms of st, following 3.3:

Pλ(Xt|Xt−1) = P (Xt|Xt−1, st, Ct, Ct−1)

= P (Xt|2Ct;α1, . . . , αK)

=
(2Ct)! Γ(α•)
Γ(2Ct + α•)

K∏
i=1

(
Γ(Xt,i + αi)
Xt,i! Γ(αi)

)
(3.18)

where αi = Xt−1,i/st, α• =
∑K

i=1 αi, and st is computed from Equation 3.17. I will briefly

describe a simple implementation of an MCMC sampler here. This is a special case of the

sampler described in the following chapter where a more comprehensive treatment is given.

I implemented such a sampler to compute the posterior probability for values of λ ∈
Λ = {λmin, λ1, . . . , λn, λmax} using a simple random walk proposal distribution for λ (e.g.,

h(λ∗|λ) = 1/2 for λ∗ = λi−1 or λ∗ = λi+1, λ 6∈ {λmin, λmax}; h(λ∗ = λ1|λmin) = 1; and

h(λ∗ = λn|λmax) = 1), and a discrete uniform proposal distribution q(w|Xt,k, Xt,`) between

the integers −L and L, inclusive, where L = 3 +
√

min{Xt,k, Xt,`}. I proposed E updates

to random components of X for each update proposed to λ, where E was chosen so that
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each component of X was expected to receive one proposal for each proposal to change λ.

The proportion of time during the MCMC run in which λ = λi estimates the posterior

probability that λ = λi.2

I used this sampler to compute a posterior distribution for λ given the data of Begon

et al. (1980). They reported census sizes of tens of thousands of flies. I thus set Ct = 10, 000

and computed a posterior for λ ∈ Λ assuming a uniform prior on the values in Λ. The points

in Λ were chosen to correspond to the values of Ne for which log-likelihood values were

computed in Chapter 2. Starting values for the X were obtained using a realization from

the forward-backward sampler of Chapter 2. This made burn-in essentially unnecessary.

The sampler was run for 100,000 updates of λ, with the collection interval u = 1. This

took 12 hours on a laptop computer with a 266 Mhz G3 (Macintosh) processor. Since this

is a case with a one-dimensional parameter with uniform prior, I was able to convert the

posterior distribution for λ into a log-likelihood curve for λ and hence for Ne. Thus, I was

able to compare it to the log-likelihood curve computed in Chapter 2. The result appears

in Figure 3.3.

The two curves are nearly identical. However, under the urn model the log-likelihood is

not as low for small values of Ne as for the importance sampling method under the Wright-

Fisher model. This slight difference may arise from the different probabilities that the two

models assign to the event of allele fixation as described in Section 3.6.

The curve obtained by MCMC required less computational time than that obtained by

importance sampling. It was also significantly simpler to implement the MCMC scheme

than the importance sampling scheme of Chapter 2. The MCMC scheme and sampling

models here are as simple as possible. In the following chapter they will both be extended

to handle a wider range of scenarios.

2This uses the Monte Carlo estimator for probabilities (1.3). In the following chapter I present a more so-
phisticated method for updating λ that will also permit a Rao-Blackwellized estimator (i.e., Equation 1.11)
for the posterior distribution of λ.
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Figure 3.3: Log-likelihood (scaled so that the maximum is zero) for Ne given the data of
Begon et al. (1980). Open circles show the result from the importance sampling scheme
of Chapter 2. Filled circles show the log-likelihood curve computed by an MCMC scheme
using the urn model of the present chapter and an assumed census size of 10,000 flies each
generation. The two methods give comparable results, but the MCMC scheme requires
less computer time. The curve for the MCMC scheme is shifted slightly to the left relative
to the curve from importance sampling. This may be due to the differences in fixation
probabilities between the Wright-Fisher model used in the importance sampling scheme,
and the urn model used for the MCMC approach.
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3.8 Discussion

In this chapter, I have described and characterized an alternative to the Wright-Fisher model

for genetic inheritance. This alternative, which I call the “urn model” carries particular

benefits for estimating λ, the per-generation ratio of effective breeders to the census number

of breeders, when the census number is known. The urn model allows the formulation of a

sensible likelihood for λ and it makes MCMC calculation of that likelihood possible. The

likelihood was derived under three assumptions that merit particular attention here. The

first is the assumption that λ is constant over time. The remaining two concern questions

of the census size: “What ages or stages of individuals should be counted in the census size

of the population?” and “What if census sizes are not known without error, but are, rather,

themselves estimates with some uncertainty?”

3.8.1 Constancy of λ

In the likelihood for λ developed in this chapter, the assumption is made that λ is constant

over time. In practice, this assumption will likely be violated. In natural populations,

one would expect that λ could be influenced by time-varying factors like population size

or climatic conditions. In managed or controlled populations it would be natural for λ

to change over time due to changes in harvest regimes or breeding practices or pesticide

use. The methods I have developed could be extended to allow the value of λ to vary over

the different inter-sample intervals. For example, λ[0,t1] could represent the value of λ that

applied to the generations between the sample at time 0 and the sample at time t1 when the

next sample is drawn from the population, and λ[t1,t2] would apply to the interval between

the sample at time t1 and the next sample in time, and so forth. Then, these specific λ[·,·]’s

could all be estimated as separate parameters. Some precision will be lost because, though

all the λ[·,·]’s would be estimated jointly, only a fraction of all the data will apply directly to

each λ[·,·]. Since λ may also be affected by the census size of the population (for example,

if there are limited nesting sites, then a generation descended from a large group of parents

might be expected to have a smaller λ than a generation descended from only a few parents

who did not have to compete for nest sites), one could also formulate a model in which λ in
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any generation, t, is a function of Ct or Ct−1. In the Bayesian setting it would be possible

to design a reversible jump MCMC (Green 1995) sampler for comparing different models

which correspond to different assumptions about how λ varies over time or as a function of

census size.

It is also not unlikely that λ would vary each generation within an inter-sample interval;

however, it would be folly to try to model this with a separate λ for each generation be-

cause, within a single inter-sample interval, separate λ’s for each generation would not be

practically identifiable. For the case of λ varying from generation to generation within the

inter-sample interval, it does not seem straightforward to derive an approximate expression

for what the maximum likelihood estimator for λ[·,·] estimates. It is not, for example, the

harmonic mean of the λ values each generation, except in the case of constant census size.

When λ[·,·]’s for all the inter-sample intervals are constrained in the model to be equal

to an overall λ as I have presented the model earlier in the chapter, another question arises:

“How is the information from different intervals weighted and combined to arrive at a single

overall estimate of λ?” The likelihood-based or Bayesian estimate of λ will be influenced

most by the intervals in which census sizes are small. This occurs because the amount of

information about λ in the data, relative to the noise from the random process of drawing

genetic samples, increases when the census size descreases. This observation does suggest

that in future analyses estimating λ in populations with census sizes that fluctuate greatly,

it would be prudent to carry out an alternative analysis under a model in which intervals

containing very small census sizes had a λ[·,·] which was a separate parameter from the λ[·,·]’s

in intervals with much larger census sizes.

The observation also exposes a generic difficulty in estimating Ne from multiple samples

in time. The first formal method described for doing so, that of Pollak (1983), assumes

that Ne is constant over the entire period from the first to the last sample. This is likely to

be untrue, especially if the census size fluctuates greatly over time. The likelihood analyses

of the Begon et al. (1980) dataset presented in this chapter and the preceding one are

similar in that they assume a constant Ne or Ct from t = 0 to T . In all of the above cases,

asking the question of how to weight information from different intervals shows us that

esimating a single Ne over a period of time which includes more than two sampling episodes
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is not a particularly well-defined problem. When census sizes are available, then estimating

λ, instead of Ne provides an alternative.

3.8.2 How do we define census sizes?

In populations with discrete generations and in which the reproductively active adults may

be readily counted and sampled separately from the rest of the population, it is quite clear

what the census size Ct should be—the number of actively reproducing adults at generation

t. For example, with pink salmon (Oncorhynchus gorbuscha), Ct should count the number

of spawning adults at time t. In other species, in which the distinction betwen mature

adult and developing youngster is not so clear, it is also less clear what quantity (i.e., total

number of animals, number of females, etc.) should be chosen to be represented by Ct.

Still, a number of sensible choices could be used, depending on the life-history features

of the species under study. For example, in a population with discrete generations in

which only the individuals above a certain age are reproductively active, Ct should count

the number of such individuals at time t—it should not be the whole population size—

adults and youngsters together. Likewise, the genetic samples should be drawn from the

reproductively active individuals or their immediate offspring.

Many organisms do not have discrete generations, of course. In such cases, the choice of

which population census quantities to define as Ct and which segments of the population to

sample should be made within the context of a stochastic model that is faithful to the life

history of the organisms under study. Only within the context of such a life-history based

model, will the meaning of λ be clear. Chapter 4 describes the elaboration of the urn model

of this chapter to the life history pattern of Pacific salmon that mature at different ages.

There is a somewhat lively literature and debate involving the estimation of the ratio

Ne/N , where Ne in the numerator represents a “long term” effective size of a population

over time and N in the denominator represents some sort of “long term” census population

size (Nunney 1995; Husband and Barrett 1995; Vucetich et al. 1997). The goal in

this series of papers is quite different from mine here. Under the perspective of the above

authors, fluctuations in population size and overlapping generations are lumped together
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with variance in offspring number as inseparable factors which influence the effective size of

a population. In contrast, the Pólya urn model here allows one to define the parameter λ to

measure the degree to which genetic change is influenced by variation in offspring number

separately from fluctuations in population size (and, in the next chapter, separately from

the effect of overlapping generations in the population).

It should be clear why being able to estimate λ is advantageous: it is often possible to

directly observe, and therefore account for, fluctuating population size and overlapping year

classes. It is harder to observe λ, and in fact, in organisms with high juvenile mortality, it

must be estimated using genetic data. Once an estimate of λ has been made, however, it can

be used to predict genetic change in a population given patterns of fluctuating population

size or overlapping generations observed in the future. This sort of “predictive analysis”,

applied to census data collected in the future, but using an estimated λ from genetic and

census data collected in the past, is not available if one computes “long-term” Ne/N as

other authors have pursued.

3.8.3 Census sizes estimated with error

Thoughout this chapter (and the next) I assume that the census sizes Ct are known without

error. While census sizes of some organisms can be determined quite accurately, they are

seldom known with certainty. For some populations, in fact, census estimates may be

very imprecise. It would be worthwhile to include this uncertainty in census sizes into the

estimation procedure for λ. I have not pursued that here, but leave it as an open problem.

An ad hoc approach to propagating the uncertainty in census size estimates to the

estimates of λ would probably be worth investigating, since treating the problem fully from

the likelihood or Bayesian perspective would be very challenging, computationally. For

example, if the true, unknown census size values were modeled as latent variables, then in

an MCMC scheme, the Hasting’s ratio involved in proposing changes to those latent census

sizes would depend not only on the census size data, but also on the genetic data at all

the loci. Not only that, but changes to the latent census size would also change the size of

the space of the latent X variables. Designing an MCMC sampler that mixed well in this
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context would, I believe, be exceedingly difficult.



74

Chapter 4

λ AND OVERLAPPING GENERATIONS

4.1 Introduction

The reproduction of natural populations is not always well-characterized by a model with

discrete generations. In particular, of the species of Pacific salmon, only the pink salmon,

Oncorhynchus gorbuscha, has a discrete-generation life history; all pink salmon, within

their native range, mature at two years of age. The other species of Pacific salmon mature,

reproduce, and senesce at a variety of ages. For example, a spawning collection of chinook

salmon might consist of three-, four-, five-, and six-year old fish. Each different year class

has descended from a different collection of reproducing parents.

These factors complicate the estimation of effective size in salmon populations—the

Wright-Fisher model simply does not describe their life history very well. In simulation

studies, however, Waples and Teel (1990) and Waples (1990a) show that many quantities

of interest, such as allele frequency variance, rate of loss of heterozygosity, and the rate of

loss of rare alleles, in a salmon population all depend on the average generation length and

the effective number of breeders per year, Nb. Waples (1990b) demonstrates that there

is an approximately linear relationship between Wright’s F -statistic and 1/Nb in salmon

populations. He then shows how that relationship may be used to estimate the harmonic

mean Nb from genetic samples of juveniles descended from temporally-spaced brood years.

The goals of this chapter are different. Rather than estimating an overall effective

number of breeders for the population, the interest here is in estimating a λ-like quantity—

a ratio of effective spawners to the census number of spawners—given data on the census

sizes of fish of different age-groups and genetic data either from adults or juveniles or both.

This goal is pursued within the context of a long time series of demographic and genetic data

of the sort that should become increasingly available due to the falling costs of genotyping
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and the ability to amplify DNA from archived fish materials (Nielsen et al. 1999). For

example, Ardren (1999) describes extensive fish scale collections from two intensively-

studied steelhead (Oncorhynchus mykiss) populations on the West Coast. These fish scales,

taken from both spawning adults and outmigrating juveniles allow the age of each fish to be

determined. Also, as Miller and Kapuscinski (1997) and Ardren (1999) have shown,

microsatellite loci may be reliably amplified from these fish scales. Furthermore, Canadian

fisheries agencies together with other scientists have proposed launching a program of close

genetic monitoring of a “reference” stream on the coast of Vancouver Island, in which

spawners are carefully counted and samples from the population are genotyped on a regular

basis (William Ardren, pers. comm.). The data-analysis framework described in this chapter

would be very appropriate for such monitoring programs.

While we will conceptually think in terms of a λ for each age group of adults, we will

rely heavily on the urn model for genetic inheritance, described in the last chapter, in order

to derive a probability model and develop Markov chain Monte Carlo (MCMC) methods for

computing the posterior probabilities of the parameters. Having such a model in which the

census number of breeders is considered known, and is used in the probabilistic model for

the population, but in which the corresponding effective size may be altered by changing a

simple parameter which does not alter the census sizes, is crucial to formulating a reasonable

probability model. In the following section I develop the probability model and several

extensions to accommodate different sampling strategies and the occurrence of null alleles.

In Section 4.3, I exploit the simple neighborhood structure in the model to develop single-

site Metropolis-Hastings updates for the latent variables in the model. These updates form

the basis of a Markov chain from which we may sample from the posterior distribution of the

parameters of interest. I represent the dependence structures using the intuitively appealing

“language” of graphical models. Since I use only the simplest results from the theory of

graphical models, it should be self-explanatory to most. However, the reader interested in

learning more about graphical models in statistics is referred to the comprehensive text by

Lauritzen (1996). Finally, in Section 4.5, I demonstrate the potential of the method in

several small trials on genetic data simulated using census size estimates of chinook salmon

from a Snake River tributary. The results suggest that the method works under such
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conditions. However, future work assessing the robustness of the method to departures

from the assumed model and characterizing the mixing properties of the sampler under

different data scenarios is warranted.

Earlier work that I did on this topic involved an extension of the methods of Chapter 2

to a case with a Pacific-salmon-like life history. I did not pursue that approach any further,

but I include a brief description of it in Appendix B. The urn model provides a superior

approach.

4.2 Overlapping Generations via an Urn Model

The urn model for genetic inheritance described in the previous chapter provides a good

mechanism for modeling genetic drift in populations with complex life histories, like those

of Pacific salmon. This section describes how it may be applied in such a context. First

we shall examine a model for the conditional dependence structure of the variables in such

a population, without reference to specific probability distributions. We then “clothe that

backbone” with the specific probability distributions chosen to represent the population-

genetic sampling, as well as the taking of genetic samples from juveniles and adults.

4.2.1 Dependence structure with the Pacific salmon life history

We consider a population of dioecious, diploid, semelparous organisms, in which adults

may mature and mate between the ages of a− and a+, inclusive, and from which it is

straightforward to sample and count the reproductive adults separately from the rest of the

population (as is the case with Pacific salmon). For example, a pink salmon population

would have a− = a+ = 2, while for a species like chinook salmon in some rivers a− might be

3 and a+ might be 5 or 6. Assume that accurate estimates of the census sizes of adults of

different age classes are available over a specific time period beginning at t = 0 and ending

at t = T . The census of a-year-old adults breeding at time t is denoted Ct,a. We shall regard

these estimates as known without error. Additionally, we shall assume that the number of

juveniles each year has been estimated, or can be specified (to within a rough approximation,

at least) based on the number of adults giving rise to them. We denote the estimated juvenile
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population size at time t by Jt. We will assume that this population behaves in genetic

terms as if it were an ideal population governed by a parameter λ which can be construed

as a vector having several components—one for each age group (λa− , . . . , λa+) and one for

the sampling from adult into juvenile or gamete stages, say λ(w). This will become more

clear when we actually start assigning probability distributions in this model.

Furthermore, assume that genetic samples are available from the adult and juvenile

populations at t = 0, t = T , and at least some (and preferably many) time points in

between. It must be possible to determine the age of adults, so that the genetic samples can

be regarded as drawn from adults of known ages. Adult ages can be determined from scales

or otoliths taken from individuals. Likewise, when sampling juveniles we shall assume that

it is possible to sample reliably from a single age class of juveniles, so that they are known

to have descended from a particular brood year of adults. This is possible, in practice,

because juveniles of many species of salmon will migrate to the ocean at a single, early

age; thus, the juveniles in a stream in a given season will all be of a known age class. For

species, like steelhead, in which the freshwater residence time of juveniles may vary widely

from individual to individual, juvenile age, like adult age, can be determined from scales or

otoliths as well.

The genetic samples involve typing individuals at L loci assumed to be independently

segregating. In such a case, it is easy to combine data from the multiple loci, so I will

describe the methodology in detail for a single locus only, and then later describe how to

combine data from multiple loci. From this single locus, let K alleles be observed in the

genetic samples from adults and juveniles. St,a denotes the sample size of adults of age a

taken at time t, and Y t,a = (Yt,a,1, . . . , Yt,a,K) is a vector of allele counts for the K different

alleles observed in the sample of a-year-olds at time t. Likewise, we denote sample sizes from

juveniles at time t by Rt, and the observed numbers of alleles from a sample of juveniles at

time t by the K-vector, Zt = (Zt,1, . . . , Zt,K).

The unobservable, or latent variables in this model are the allele counts in the adults

of different ages at each of the times t, Xt,a = (Xt,a,1, . . . , Xt,a,K), and the allele counts

amongst the juveniles at the different times t, W t = (Wt,1, . . . , Wt,K). Note that the sum

of the K components of Xt,a is 2Ct,a, and the sum of the components of W t is 2Jt.
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Before specifying probability distributions for the observed genetic samples and for the

transitions between the latent variables, it is helpful to simply consider the conditional

dependence structure between the variables, given the overlapping year-class nature of the

population’s reproduction. We will first investigate this dependence structure under the

assumption that individuals sampled from amongst the adults are not then precluded from

reproducing themselves. This corresponds to Sampling Scheme I of Nei and Tajima (1981)

(without the restriction that the census size is equal to the effective size of the population).

This sort of sampling would be realized if non-invasive genetic sampling (e.g., fin clips)

was used, or if adults were sampled destructively after spawning. I will consider Sampling

Scheme II in Section 4.2.2.

Figure 4.1 shows an acyclic directed graph for a hypothetical population in which T = 7,

a− = 2, and a+ = 4. In this graph, the arrows may be taken to represent a temporally-

defined dependence. That is, c −→ d may be read to mean “c is a variable that ‘occurs’

before d in time, and upon which the distribution of d depends.”1 The form of the graph

thus follows exactly from what we know about reproduction in a population of Pacific

salmon from which we sample both juveniles and adults. The shape of the graph also

admits a simple factorization of the joint probability of all the variables involved. To

express this succinctly, the following notation will be useful: let the set of relevant times

and ages be denoted T = {(t, a) : 0 ≤ t ≤ T, a− ≤ a ≤ a+}. The set of times and

ages which are “initial points” are those for which we must posit a prior distrubution for

adult allele counts over which we will integrate. This set is P = {(t, a) ∈ T : t − a < 0},
and we will use the shorthand XP to refer to the latent allele counts in adults of those

ages and times. In the graph of Figure 4.1, the elements of XP are surrounded by dotted

circles. We will refer to the set of pairs, (t, a) which are not in P as being in the set

Pc = {(t, a) ∈ T : t − a ≥ 0}. We shall denote by SY = {(t, a) ∈ T : St,a > 0} the

set of times and ages for which we have drawn genetic samples from the adults. Similarly,

the set of all times for which a genetic sample from the juveniles has been taken will be

1The variable c is said to be a “parent” of d, and variable d is called a “child” of variable c. This
terminology will be used later in the context of moralizing directed graphs to find neighborhoods of
variables.
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denoted by RZ = {t : 0 ≤ t ≤ T, Rt > 0}. And finally let the bold roman versions of each

variable refer to sets of variables as follows: Y = {Y t,a : (t, a) ∈ SY}, Z = {Zt : t ∈ RZ},
X = {Xt,a : (t, a) ∈ T }, and W = {W t : 0 ≤ t ≤ T}.

The joint probability of the observed and latent variables may then be written as

Pλ(Y,Z,X,W) = Pλ(XP) (4.1)

×
∏

(t,a)∈SY

P (Y t,a|Xt,a)×
∏

t∈RZ

P (Zt|W t)

×
∏

(t,a)∈Pc
Pλ(Xt,a|W t−a)×

∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+)

where P (·|·) denotes a conditional probability distribution function not depending on λ,

Pλ(·|·) a conditional distribution depending on λ and Pλ(XP) is the prior probability of

XP , which also depends on λ. This prior distribution, Pλ(XP), must necessarily be a

joint distribution on the components of XP , since we expect that those components will be

dependent. I will treat this in more detail in Section 4.2.5, but for now we take the joint

prior distribution as given. The two terms on the second line of (4.1) are the probabilities of

the observed allele counts in all the samples of adults and juveniles, respectively. The two

terms on the third line of the equation are 1) the probabilities due to population-genetic

sampling of the latent allele counts in the adult groups given the juvenile cohorts to which

they belonged, and 2) the probability of the latent allele counts amongst a juvenile cohort

given all the adult age classes contributing to it.

4.2.2 Dependence structure under Sampling Scheme II and with null alleles

The dependence structure described in the previous section applies to many situations, but

one may encounter other cases which require extensions to that basic dependence structure.

Here I will deal with two such cases: 1) that when the genetic sampling is destructive

and occurs before reproduction, so that individuals which are sampled do not have the

opportunity to contribute offspring to the following years, and 2) the case of alleles that are

not codominantly expressed.

Nei and Tajima (1981) used the name “Sampling scheme II” for the case when the
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Y t,2 Y t,3 Y t,4

X t,2

X t,3

X t,4

W t

Zt

Figure 4.2: Acyclic directed graph describing the conditional dependence structure in the
probability model for overlapping generations at year t, with three age classes of adults
(2,3,4), under Sampling Scheme II—sampling adults destructively and before reproduction.
The arrows connecting these variables to other times are omitted in this figure.

census size is larger than the effective size, and the genetic samples are destructively obtained

before the organism is able to reproduce. Waples (1989) showed that the two sampling

schemes could be handled within the same general F -statistic framework, with only a slight

difference in the formulae for converting estimates of F to estimates of Ne. In our case,

using a probability model derived from the urn model of the previous chapter, if the census

size of the population is known, then the two different sampling plans can be treated using

the different probability distributions that they give rise to.

The dependence structure of Figure 4.1 applies to Sampling Scheme I. For Scheme II,

the dependence structure is different. Because the sampling is destructive, the gene copies

sampled are not available to contribute gametes to the gamete pool. Hence, Wt will depend

upon both Xt,a and Yt,a for a− ≤ a ≤ a+. Figure 4.2 shows the dependence structure

between the variables in a year t under Sampling Scheme II. The arrows between years are

not shown, though they occur in the same places and directions as in Figure 4.1. Note the

inclusion of the arrows (shown with finely dotted lines) from the samples to the gamete

pool. This implies a modification of (4.1), changing the last factor to be

∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+ ,Y t,a− , . . . ,Y t,a+). (4.2)
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It would not be difficult to modify the dependence structure further to account for the

destructive genetic sampling of juveniles. However, I do not pursue that here, assuming

instead that the gamete/juvenile pool from which samples are drawn is large enough that

the effect of removing a sample of juveniles has little impact on the allele frequencies which

will occur in the spawning populations of mature organisms.

Another complication which is frequently encountered is the occurrence of alleles that

are not codominantly expressed. In this case, it is often possible to detect homozygotes of

a particular allele, but the heterozygotes appear to be homozygotes of an alternate allele.

This adds another layer of complexity to the model. The reason for this is that, when

some alleles cannot be reliably detected in heterozygote form, it is not possible to actually

observe allele counts Y t,a in samples taken from the adults. Instead one observes only the

counts of phenotypes (heterozygotes and apparent homozygotes) of different types, which I

shall denote by G(Y,o)
t,a for (t, a) ∈ SY. The superscript (Y,o) refers to the fact that these are

the observed phenotypes in the sample from adults. Similarly, the samples from juveniles

permit only the observation of phenotypes which will be denoted by G(Z,o)
t , t ∈ RZ. Part of

G(Y,o)
t,a and G(Z,o)

t should be thought of as symmetrical matrices with (i, j)
th

element equal

to (j, i)th element and giving the number of observed phenotypes with a copy of allele i

and a copy of allele j (i, j codominant). One additional category of phenotypes must be

included in both G(Y,o)
t,a and G(Z,o)

t . For this we use G
(Y,o)
t,a,− and G

(Z,o)
t,− , to denote the number

of individuals in the samples from adults and juveniles, respectively, in which no bands

on a gel were detected. For example, if only allele i at a locus was undetectable, then for

the sample from juveniles at time t, G
(Z,o)
t,i,j would be zero, G

(Z,o)
t,j,j would be the sum of the

number of (j, j) genotypes and the number of heterozygotes of i and j, and G
(Z,o)
t,− would be

the number of (i, i) homozygotes.

Computing the probability of G(Y,o)
t,a given Xt,a or G(Z,o)

t given W t would require a sum

over all possible unobserved genotypes consistent with the observed phenotypes. To avoid

having to do that sum directly, we will introduce more latent variables and effectively sum

over them using MCMC. This also greatly simplifies the joint probability function in the

case of Sampling Scheme II in the presence of null alleles. The new latent variables are

G(Y,`)
t,a and G(Z,`)

t , which are analogous to the symmetrical matrix portions of G(Y,o)
t,a and
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Figure 4.3: Acyclic directed graphs describing the conditional dependence structure in the
probability model for overlapping generations at year t with three age classes (2,3,4) and
with some alleles not codominantly expressed. The arrows connecting these graphs to other
times are omitted in this figure. (a) Sampling Scheme I, sampled adults still contribute
offspring to future generations (b) Sampling Scheme II, adults sampled destructively.

G(Z,o)
t , except that they count the number of different types of genotypes that would be

observed if all the alleles were fully penetrant. Note that there is a many-to-one map from

the space of G(Y,`)
t,a to that of G(Y,o)

t,a , and similarly from the space of G(Z,`)
t to G(Y,o)

t .

So long as the genetic transmission processes we consider are exchangeable, the de-

pendence structure between these new variables within a year is given by the graph of

Figure 4.3(a) for Sampling Scheme I and Figure 4.3(b) for Sampling Scheme II. The joint

distribution of all the variables involved can then be written similarly to (4.1). Using the

notation G(Y,o) = {G(Y,o)
t,a : (t, a) ∈ SY} and G(Z,o) = {G(Z,o)

t : t ∈ RZ} along with
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G(Y,`) = {G(Y,`)
t,a : (t, a) ∈ SY} and G(Z,`) = {G(Z,`)

t : t ∈ RZ}, we have

Pλ(G(Y,o),G(Z,o),G(Y,`),G(Z,`),X,W) = (4.3)

Pλ(XP) ×
∏

(t,a)∈SY

P (G(Y,o)
t,a |G

(Y,`)
t,a ) ×

∏
t∈RZ

P (G(Z,o)
t |G(Z,`)

t )

×
∏

(t,a)∈SY

P (G(Y,`)
t,a |Xt,a) ×

∏
t∈RZ

P (G(Z,`)
t |W t)

×
∏

(t,a)∈Pc
Pλ(Xt,a|W t−a) ×

∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+)

for Sampling Scheme 1. For Sampling Scheme II, the final term in the product must be

replaced by ∏
0≤t≤T

Pλ(W t|Xt,a− , . . . ,Xt,a+ ,G(Y,`)
t,a− , . . . ,G(Y,`)

t,a+ ).

Specification of the probability functions specific to sampling with recessive alleles is deferred

until Section 4.2.4.

4.2.3 Specifying probability distributions

The graph of Figure 4.1 and the corresponding factorization of Equation 4.1 (as well as their

extensions for the special cases described above) indicate that the probability model here

may be fully defined by assigning distributions to Pλ(XP) and the different Pλ(·|·) and P (·|·)
distributions. Specifying these distributions requires several assumptions to be made about

how reproduction occurs. In general, I shall model population-genetic sampling by Pólya

urn models, and the drawing of genetic samples by sampling without replacement from the

populations. In this context, sampling “without replacement” is not referring to whether

or not sampled individuals are able to reproduce; it is referring to how the genetic samples

are obtained. Certainly, destructive genetic sampling will occur without replacement, but

even non-invasive sampling could occur without replacement since any previously-sampled

fish will bear marks (for example the loss of a fin clipped for genetic sampling) that should

prevent it from being sampled twice. For the samples taken from a large pool of juveniles,

there will be little difference between the multivariate hypergeometric sampling implied
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by sampling without replacement and the multinomial sampling implied by sampling with

replacement.

The simplest transition to model is that described by Pλ(Xt,a|W t−a). This is the

population-genetic sampling which occurs when juveniles from time t− a are “selected” or

“sampled” to survive to be reproducing adults of age a at time t. This depends on λa,

and, following Equation 3.17 on Page 63, may be parametrized in terms of a stochastic

replacement quantity ϕt,a which depends on the juvenile census size, Jt−a, the adult census

size, Ct,a, and λa:

ϕt,a =
2Jt−a(1− λa)
2λaCt,a − 1

. (4.4)

Thus, given W t−a, Xt,a follows the compound multinomial distribution (3.3). The proba-

bility mass function may be expressed, similarly to (3.3), as a normalizing constant times a

product of K terms corresponding to the K different alleles:

Pλ(Xt,a|W t−a) = P (Xt,a|W t−a, λa, Ct,a, Jt−a)

= P (Xt,a|W t−a, ϕt,a, Ct,a)

=
(2Ct,a)! Γ(α•)
Γ(2Ct,a + α•)

K∏
i=1

(
Γ(Xt,a,i + αi)
Xt,a,i! Γ(αi)

)
(4.5)

where αi = Wt−a,i/ϕt,a and α• =
∑K

i=1 αi.

Modeling the stochastic process and distribution for Pλ(W t|Xt,a− , . . . ,Xt,a+) is more

difficult, and requires that more assumptions be made about reproduction and survival in

the population. The particular problem that arises is that the distribution of W t depends

not only on the vagaries of sampling alleles from within each age class of adults (i.e.,

non-multinomial sampling of gene copies from amongst the Ct,a a year-olds), but also on

the fact that adults of different age classes may produce different mean numbers of juvenile

offspring, either by producing more gametes or by producing individuals with higher survival

to the juvenile stage. This second effect is akin to that discussed in Ryman and Laikre

(1991), in which the inbreeding effective size of a population is decreased due to the higher

survivorship of a segment of the population included in a supportive breeding program.

Since it is impossible to determine the age of the parent of any gene copy sampled amongst
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juveniles, these two sources of variation in W t are confounded and may not be separated.

Rather than include these two confounded processes in a model which is not identifiable, I

assume an ideal model for the production of juveniles from adults of different age classes,

and then account for both of the above-mentioned processes by a single parameter in an

urn model scheme.

This ideal model assumes that each adult at time t produces an age-specific number

of gametes, and the survivors to the juvenile stage are sampled from those gametes by an

urn scheme with stochastic replacement parameter ψt. More specifically, each diploid adult

of age a contributes γa copies of each of its two gene copies to the gamete pool. Thus,

the counts of the different alleles in the gamete pool at time t are given by the K-vector

Bt = (Bt,1, . . . , Bt,K) =
∑a+

a=a− γaXt,a. Then, the 2Jt gene copies in the juveniles are

sampled from this gamete pool via a Pólya urn scheme in which the stochastic replacement

quantity depends on the parameter λ(w)—the conceptual ratio of “effective juveniles” to the

census number of juveniles. Letting Bt,• denote the total number of gametes in the gamete

pool at time t (Bt,• =
∑a+

a=a− 2γaCt,a =
∑K

i=1 Bt,i), then, once again by Equation 3.17 on

Page 63, we have the stochastic replacement

ψt =
Bt,•(1− λ(w))
2λ(w)Jt − 1

. (4.6)

And so, the conditional probability Pλ(W t|Xt,a− , . . . ,Xt,a+) may now be expressed as

Pλ(W t|Xt,a− , . . . ,Xt,a+) = P (W t|Xt,a− , . . . ,Xt,a+ , Ct,a− , . . . , Ct,a+ ,γ, Jt)

= P (W t|Bt, ψt, Jt)

=
(2Jt)! Γ(α•)
Γ(2Jt + α•)

K∏
i=1

(
Γ(Wt,i + αi)
Wt,i! Γ(αi)

)
(4.7)

where αi = Bt,i/ψt and α• =
∑K

i=1 αi.

The quantities γ = (γa− , . . . , γa+) may be interpreted as fitness measures for different

age classes expressing how successful they are at producing juveniles of sampling age. In

practice, γa can be chosen to reflect the biology of the situation. For example, a reasonable

choice for salmon would be one half the fecundity of age a females. It should be clear from
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the above expression, that the absolute magnitudes of the γa’s are actually irrelevant; the

parametrization of ψt in terms of Jt and the relationship between αi, Bt,i, and ψt ensure

that the relative sizes of the γa’s are all that matter. Nonetheless, it is computationally

convenient to think of the γa’s in terms of the number of gametes produced.

Another, and a possibly more elegant, interpretation of this population-genetic sampling

scheme for juveniles is provided by the conditional branching process model of Karlin

and McGregor (1965) with negative binomial distributions of offspring number (see Sec-

tion 3.4). In this interpretation, the total number of juvenile gene copies is fixed to be

2Jt, however the distribution of the number of copies of each gene within an age a adult

appearing among the juveniles is exchangeably negative binomial with arbitrary (but equal

for all genes) scale parameter β, and shape parameter γa/ψt. By such an interpretation it

is perhaps even more clear that ψt, the stochastic replacement quantity for reproduction

into juveniles at time t, represents both non-Wright-Fisher sampling within age classes, but

also a departure from our best guess as biologists as to the fitnesses/fecundities of adults of

different age classes. Since both the non-Wright-Fisher sampling within age classes, and the

unkown differential survival between age classes reduce effective size of populations, and will

therefore affect λ, it seems quite reasonable that both are accounted for in the parameter

λt.

In the case of Sampling Scheme II, in which adults are destructively sampled before

reproduction, defining the probability function Pλ(W t|Xt,a− , . . . ,Xt,a+ ,Y t,a− , . . . ,Y t,a+)

requires only a simple modification to the above mechanism for transmission of genes to

juveniles. Since sampled adults do not contribute to future generations, we need merely

define Bt,i so as to reflect that. Namely, Bt,i =
∑a+

a=a− γa(Xt,a,i − Yt,a,i), and Bt,• must be

modified accordingly: (Bt,• =
∑a+

a=a− 2γa(Ct,a−St,a) =
∑K

i=1 Bt,i). For Sampling Scheme II

in the presence of null alleles, Yt,a,i in the immediately preceding sentence may be replaced

by the quantity Y
(`)
t,a,i described in the next section.

Finally, we only have to specify probability distributions for the genetic samples drawn

from adults and juveniles, P (Y t,a|Xt,a) and P (Zt|W t). As stated at the beginning of this

section, sampling without replacement is a good model for the acquisition of genetic sam-

ples. With multiple alleles, this leads to the multivariate hypergeometric distribution (see
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Johnson et al. 1997, Chapter 39). This distribution may also be written as a normalizing

constant multiplied by a product of K terms, one for each of the K alleles. So, for the

genetic samples taken from adults we have

P (Y t,a|Xt,a) =
(2Ct,a − 2St,a)!(2St,a)!

(2Ct,a)!

K∏
i=1

Xt,a,i!
(Xt,a,i − Yt,a,i)!Yt,a,i!

. (4.8)

For genetic samples taken from the juveniles, we can also use the multivariate hyperge-

ometric distribution

P (Zt|W t) =
(2Jt − 2Rt)!(2Rt)!

(2Jt)!

K∏
i=1

Wt,i!
(Wt,i − Zt,i)!Wt,i!

, (4.9)

or, since the number of juveniles is typically large, modeling the process as sampling with

replacement will yield essentially the same result, and so the multinomial probability dis-

tribution is appropriate:

P (Zt|W t) = (2Rt)!
K∏

i=1

[Wt,i/(2Jt)]Zt,i

Zt,i!
. (4.10)

Notice that (4.10) also includes a simple product of terms over alleles.

4.2.4 Probabilities with recessive alleles

For recessive or null alleles at a locus with K alleles, I assume Hardy-Weinberg equilibrium

and a simple penetrance model which may be summarized by the matrix A having elements

ai,j , 1 ≤ i, j ≤ K. ai,j = 0 implies that an allele of type i is detectable (i.e., leaves a band

on a gel) when it occurs in the same individual as an allele of type j. If i subscripts a null

allele, than ai,i = 0 and also ai,j = 0 for all other j. This penetrance model can also account

for other simple dominance relationships between alleles (e.g., ai,j = 0 but ai,i = 1).

Given the latent genotypes of sampled juveniles, G(Z,`)
t , the observed phenotypes can be

found by G
(Z,o)
t,i,i = ai,iG

(Z,`)
t,i,i +

∑
j 6=i ai,j |aj,i−1|G(Z,`)

t,i,j and, for j 6= i, by G
(Z,o)
t,i,j = ai,jaj,iG

(Z,`)
t,i,j .

The number of individuals showing no bands, G
(Z,o)
t,− , is found by subtraction, being half

the number of gene copies not otherwise accounted for. Since there is a deterministic map

from G(Y,`)
t,a to G(Y,o)

t,a , P (G(Y,o)
t,a |G

(Y,`)
t,a ) will take the value one whenever G(Y,`)

t,a is consistent

with G(Y,o)
t,a and zero otherwise. The map from G(Y,`)

t,a to G(Y,o)
t,a works similarly. Notice also
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that the allele counts in the sample may be easily obtained from G(Y,`)
t,a or G(Z,`)

t . We will

denote these as Y (`)
t,a and Z(`)

t , respectively.

Deriving the probability distribution P (G(Y,`)
t,a |Xt,a) under the assumption of sampling

without replacement requires some combinatoric calculations. Since the fates of gene copies

in the genetic transmission and sampling models adopted here are exchangeable, the prob-

ability of every ordering of gene copies into the adults in the population, and therefore into

the sampled adults from the population, is the same. Therefore P (G(Y,`)
t,a |Xt,a) may be

found by counting the ways of drawing particular combinations of pairs of genes, G(Y,`)
t,a ,

from the allele counts in the adults Xt,a, and dividing by the total number of ways of draw-

ing any St,a pairs from the population. I show this below, suppressing the t,a subscript

and (Y,`) superscript on elements of G(Y,`)
t,a , the t,a subscript on elements of Xt,a and on

the population and sample sizes Ct,a and St,a, and the (`) superscript and t,a subscript on

elements of Y (`)
t,a.

First, the denominator of the probability P (G(Y,`)
t,a |Xt,a) is the number of ways of drawing

an unordered collection of S unordered pairs from a population of 2C gene copies, which is

1
S!

S−1∏
i=0

( 2C − 2i

2

)
=

(2C)!
2SS!(2C − 2S)!

. (4.11)

The product of binomial coefficients arises from sequentially choosing unordered pairs with-

out replacement, and the 1/(S!) accounts for the different orders in which those pairs may

be drawn.

The numerator of P (G(Y,`)
t,a |Xt,a) may be written as

K∏
i=1

( Xi

Yi

)
· Yi!
(2Gi,i)!

∏
j 6=i Gi,j !

· (2Gi,i)!
2Gi,iGi,i!

·
∏
j<i

Gi,j !

 (4.12)

and explained as follows: we have a product over alleles of four factors; the first factor

is a binomial coefficient that counts the number of ways of choosing Yi gene copies of

type i from a population having Xi such gene copies. The second factor is a multinomial

coefficient which counts the ways of partitioning those Yi gene copies into the groups of

genes participating in the different categories of genotypes. The third factor counts the

number of ways 2Gi,i gene copies of allelic type i can be paired up into Gi,i unordered
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homozygous genotypes (this is a special case of (4.11)). And, finally, Gi,j ! is the number

of ways of making Gi,j heterozygote genotypes from Gi,j copies of alleles of type i and Gi,j

copies of alleles of type j. The product of Gi,j ! is taken over j < i since, in combination

with the other product from i = 1 to K, this leads to the product over all heterozygote

classes.

Equation 4.12 simplifies modestly so we may write our desired probability as

P (G(Y,`)
t,a |Xt,a) =

∏K
i=1

(
Xi!

(Xi−Yi)!
· 1

2Gi,i
∏K
j=1 Gi,j !

·
∏

j<i Gi,j !
)

(2C)!
2SS!(2C−2S)!

. (4.13)

This is (4.12) divided by (4.11). The same is true for P (G(Z,`)
t |W t) using J and R, and

with Z’s replacing Y ’s and W ’s replacing X’s, under the assumption that sampling from

juveniles is done without replacement. Under the assumption that sampling from juveniles

is done with replacement, P (G(Z,`)
t |W t) is a simple expression given by a multinomial

distribution with cell probabilities being the genotype frequencies expected under Hardy-

Weinberg equilibrium.

4.2.5 The prior distribution for allele counts

The prior distribution P (XP) presents some interesting difficulties. Ideally, we would like

to use some sort of stationary distribution of allele counts XP for the salmon population

under study. However, this is difficult, first, because with fluctuating sizes, the population

allele frequencies won’t strictly have a stationary distribution, and second, because even if

we knew the historical sizes of the population, it would not be straightforward to determine

the distribution of XP . Below, I present, in series, several different ways of handling the

prior, Pλ(XP), starting with the most naive. In practice, some combination of the methods

described below will probably work best. The choice of which to use is a matter of balance

between reflecting the reality of the situation and imposing too much (and possibly incorrect)

structure on the latent variables, which will affect the inferences made.

The most naive approach would be to use independent priors for the components of XP .

Independent, uniform priors, for example, would assert very little a priori structure on the

model. This is naive because some of the components of XP reflect fish that have matured
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from the same pool of juveniles. Clearly, allele frequencies amongst adults matured from

the same cohort of juveniles will be correlated. Fortunately, if a large sample has been taken

from every time and age in P, then the choice of prior may have little effect since those

data (let us call them YP) will constrain XP considerably.

An improvement on the above can be made by adding to the model the allele counts

in juvenile pools contributing to the adult populations of P. For example, extending the

graph in Figure 4.1 to include juvenile pools in “negative time,” we could have the variable

W−1, from which X1,2, X2,3, and X3,4 are drawn; W−2 parental to X1,3 and X2,4 in

the graph; and W−3 parental to X1,4. Then, even with independent prior distribution on

W−3, W−2, and W−1, the correlation between X1,2, X2,3, and X3,4 would be modeled, as

well as that between the other elements ofXP . In general, this approach requires specifying

a+ new variables, W−a+ , . . . ,W−1, and giving them independent priors. While this is a

great improvement over the first approach, it still does not account for the correlation that

is bound to exist between the allele counts in the juvenile pools in “negative time.” An ad

hoc approach to doing so is described in the following method.

An approximate relationship between the variables (W−a+ , . . . ,W−1) can be derived

using the work of Waples (1990b) which explores the expected F -statistics between the

allele frequencies corresponding to W−a+ and the remaining components, as a function

of the effective number of breeders Nb and the proportion of fish maturing at different

ages. Consider a salmon population progressing through time with effective numbers of

spawners Nb, possibly changing each year, and with f = (fa− , . . . , fa+) being a vector of

proportions giving the probability that a fish matures at a particular age. Through computer

simulation of such a population, Waples (1990b) found a linear relationship between the

expected value of F computed from allele frequencies in the gamete pools separated by t

years and the inverse of twice the harmonic mean effective number of breeders (Ñb) in the

t years between the gamete pools considered. He also showed that the slope of this linear

relationship depends on t and the proportions f . We will denote this slope by the function

∆t(f). Tajima (1992) gives a convenient recursive algorithm for computing ∆t(f). In our

case, denoting the allele frequency in a juvenile or gamete pool at time i by pi, Waples
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(1990b) empirically shows that

E[(p−a+ − pi)2]
p−a+(1− p−a+)

≈ ∆i+a+(f)
2Ñb

(4.14)

for i = −a+ + 1, . . . ,−2,−1. If we assume that the juvenile/gamete pools in these years

are all of the same size, J (−) diploids (the superscript (−) refers to these being in “negative

time”), and the expected value of each of W−a++1, . . . ,W−1 is W−a+ , then, by (4.14), we

have for allele j at time i

Var(Wi,j |Wa+,j) = E[(2J (−))2(p−a+ − pi)2]

≈ (2J (−))p−a+(1− p−a+)

(
(2J (−))∆i+a+(f)

2Ñb

)
. (4.15)

This is the variance of a binomial random variable with 2J (−) trials and success prob-

ability pa+ , multiplied by the term in the large parentheses. That, in turn, is the form

of the variance of a beta binomial random variable. From the discussion in Section 3.3

(Page 55) of the relationship between the variance of beta-binomial and binomial random

variables, it may be seen that a distribution satisfying the variance relationship in (4.15) is

the beta-binomial distribution with 2J (−) trials and parameters αj and α• − αj such that

aj/α• = p−a+ and
2J (−) + α•

1 + α•
=

(2J (−))∆i+a+(f)
2Ñb

. (4.16)

This suggests that the following would be a reasonable way to construct a prior for the

vector (W−a+ , . . . ,W−1):

1. Assume reasonable values for the proportions of individuals maturing at different ages,

f = (fa− , . . . , fa+).

2. Let W−a+ follow a discrete uniform prior (since J (−) does not change in the MCMC

simulations, this term in the distribution will conveniently never change, either).

3. Given W−a+ , assume that W i (i = −a+ + 1, . . . ,−1) are drawn from the gene copies

in the juvenile pool at time −a+ via independent Pólya urn schemes with stochastic
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replacement quantities ψ
(−)
i = 2J (−)/α•i , where α•i is calculated according to (4.16):

α•i =
2Ñb −∆i+a+(f)

∆i+a+(f)− Ñb/J (−)
. (4.17)

It can be shown that conditional on W−a+ such a distribution will have the variance

of (4.15). Although it will not properly reflect the covariance between the gamete pools,

it should be a very reasonable approximation. In practice, of course, the harmonic mean

effective number of breeders will be unknown, but one should be able to make a reasonable

estimate at the harmonic mean census number of spawners of all age groups in the a+ years

before data started being recorded for the population. Denoting that quantity as C̃(−), a

simple way of estimating Ñb given C̃(−) and λ is Ñb = λ(−)C̃(−) where λ(−) =
∑a+

a=a− faλa.

This is the way in which the prior distribution depends on λ.

Finally, if census sizes (or estimates thereof) of the different aged fish in the population

are known in the years before the genetic data started being collected, that information

can similarly be used to help define a prior distribution for XP . Doing so is simple—one

merely defines time 0 to be the time at which the first census size data are available. Then,

everything from the previous several paragraphs still applies for constructing a prior on

initial gamete pools, but one also has several years of census data over which Xt,a’s and

W t’s may be sampled in an MCMC sampler, helping to more accurately reflect the joint

distribution of Xt,a’s when genetic samples are finally taken.

In concluding this section, I point out that while the ad hoc approach described above

is reasonable and practical, it is not deeply satisfying. The derivation of an elegant prior

Pλ(XP) remains an interesting, open problem.

4.3 A Bayesian Formulation and MCMC Simulation from P (λ|X,W)

A Bayesian formulation of this problem is obtained by assigning a prior distribution P (λ)

for λ. This leads to the posterior distribution

P (λ|Y,Z) =
P (λ)

∑
X,W Pλ(Y,Z,X,W)∫

λ P (λ)
∑

X,W Pλ(Y,Z,X,W)dλ
(4.18)

where the integral in the denominator is over all values of λ and the sum is over all possible

values of X and W. This sum and integral are intractable. However, it is possible to simulate
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values of λ from this posterior distribution using the Metropolis-Hastings algorithm, and

thus, the posterior distribution may be evaluated by Markov chain Monte Carlo. This is

presented in overview in the following two paragraphs, and in detail in the remainder of the

section.

Given current values of X, W, and λ, a Metropolis-Hastings update step for X involves

simulating a new value X′ from a proposal distribution qX(X′|X, · · ·) that depends on X,

and possibly on the current values of other variables in the model (denoted by “· · ·”). A

uniform random variable on the unit interval U is then drawn. If U < HX then the proposal

is accepted and the value of X is changed to X′. If U > HX, then the value of X remains

unchanged. If

HX =
qX(X|X′, · · ·)Pλ(Y,Z,X′,W)
qX(X′|X, · · ·)Pλ(Y,Z,X,W)

, (4.19)

then, if qX is such that successively applying the updates using U and HX above leads to

an irreducible Markov chain of X values, that Markov chain will have limit distribution

Pλ(X|Y,Z,W). Similarly, updates to W can be made by proposing new values W′ from

qW(W′|W, · · ·), drawing U and accepting the proposal if U is less than

HW =
qW(W|W′, · · ·)Pλ(Y,Z,X,W′)
qW(W′|W, · · ·)Pλ(Y,Z,X,W)

. (4.20)

In the same way, updates to λ are made with a proposal distribution qλ(λ′|λ, · · ·) and

accepted according to the Hastings ratio

Hλ =
qλ(λ|λ′, · · ·)P (λ′)Pλ′(Y,Z,X,W)
qλ(λ′|λ, · · ·)P (λ)Pλ(Y,Z,X,W)

. (4.21)

Applying these updates in series (update X, update W, update λ, update X, update W,

and so on. . . ) leads to a Markov chain with limit distribution P (λ,X,W|Y,Z). Sampling

n values of λ visited by this chain gives a sequence λ(1), . . . ,λ(n) which may be used to

estimate P (λ|Y,Z) by Monte Carlo. The following three sections provide greater detail on

the calculations involved. Section 4.3.1 shows how to exploit the conditional dependence

structure of the graph in Figure 4.1 to simplify the calculation of Hastings ratios for X′

and W′. Then Section 4.3.2 gives a prescription for the proposal distributions qX and qW.

Finally, in Section 4.3.3, proposal distributions for λ are considered, and a Rao-Blackwellized

estimator for P (λ|Y,Z) is given.
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4.3.1 Neighborhood structures and joint probability ratios

Making updates to X and W requires repeated calculation of the Hastings ratios (4.19) and

(4.20). This task is made easy by proposing changes only to small parts (two components,

for example) of either X or W at any one time. The neighborhood structure inherent in the

graph of Figure 4.1 and the fact that the probabilities described above can all be written in

terms of a product over the K alleles make this particularly attractive, as described below.

Let the data from the genetic samples be considered fixed at Y and Z, and suppose the

current values for X and W are denoted by X and W, respectively. Let X′ and W′ differ

from X and W only at an arbitrary, single component subscripted by (t′, a′) ∈ T for X′

and by t′ ∈ {0, . . . , T} for W′. In doing MCMC we will make frequent use of the ratios

Pλ(Y,Z,X′,W)
Pλ(Y,Z,X,W)

and
Pλ(Y,Z,X,W′)
Pλ(Y,Z,X,W)

. (4.22)

Calculating such ratios is done quickly by noting that they are functions only of a small col-

lection of variables adjacent in the graph to the altered component. The variables adjacent

to the altered component in the graph are members of its neighborhood, and the factors

in the joint density including those neighbors are the only ones that are changed by the

alteration in that component. Hence, the other factors cancel out in the ratio. The neigh-

borhoods can be graphically found and represented via the moralized, undirected graph

associated with the directed graph (Lauritzen 1996). The moralized subgraph around

Xt′,a′ (or W t′) is formed by starting with the subgraph containing all variables which are

either connected to Xt′,a′ (or W t′) by arrows in either direction or which are parents of

any children of Xt′,a′ (or W t′), and then converting all the arrows between those variables

to undirected edges and moralizing the subgraph. Moralizing is done by including edges

between any unconnected parents in the directed graph. Directed and moralized versions

of the subgraphs around X6,3 and W 3 from Figure 5.1 are shown in Figure 4.4. The corre-

sponding distribution associated with each undirected graph in the figure may be factorized

by their cliques (maximally connected subgraphs). Therefore the ratios in (4.22) may be

written as ratios of terms corresponding to the cliques. Using the notation X{t′,\a′} to refer
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Y 6,3

X6,2

X6,3

X6,4

W 3 W 6

(a)

Y 6,3

X6,2

X6,3

X6,4

W 3

W 6

(b)

X3,2 X5,2

X3,3
X6,3

X3,4
X7,4

W 3

Z3

(c)

X3,2 X5,2

X3,3 X6,3

X3,4
X7,4

W 3

Z3

(d)

Figure 4.4: Neighborhoods for the allele count amongst the juveniles and adults. (a) and
(b) are respectively the directed and the moralized, undirected subgraphs for the relevant
neighborhood in X′ with t′ = 6 and a′ = 3. (c) and (d) are the same for the neighborhood
around W 3 (i.e., t′ = 3).
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to the set {Xt′,a− , . . . ,Xt′,a+}, excluding Xt′,a′ , we have

Pλ(Y,Z,X′,W)
Pλ(Y,Z,X,W)

=
Pλ(W t′ |X ′t′,a′ ,X{t′,\a′})

Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)
×

P (Y t′,a′ |X ′t′,a′)
P (Y t′,a′ |Xt′,a′)

(4.23)

×
Pλ(X ′t′,a′ |W t′−a′)
Pλ(Xt′,a′ |W t′−a′)

for the ratio involving an altered version of X. Note that if (t′, a′) ∈ P then a term

corresponding to the prior P (XP) would also appear in the ratio. For the ratio involving

the altered version of W we have

Pλ(Y,Z,X,W′)
Pλ(Y,Z,X,W)

=
Pλ(W ′

t′ |Xt′,a− , . . . ,Xt′,a+)
Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)

× P (Zt′ |W ′
t′)

P (Zt′ |W t′)
(4.24)

×
∏

(t,a)∈Wt′

Pλ(Xt,a|W ′
t′)

Pλ(Xt′,a′ |W t′)

where Wt′ represents the times and ages of adults descended from the juvenile pool at time

t′. That is, Wt′ = {(t, a) ∈ T : t− a = t′}.
Let us now make the further restriction that X′ differs from X only in two components

of X′t′,a′ . That is to say X ′t′,a′,i and X ′t′,a′,j can take any non-negative values so long as

X ′t′,a′,i + X ′t′,a′,j = Xt′,a′,i + Xt′,a′,j . We shall make a similar restriction on W′. In such a

case, the probability ratios in (4.23) and (4.24) simplify further still, with the normalizing

constants and the terms for unaltered allele counts cancelling out. Hence we have

P (Y t′,a′ |X ′t′,a′)
P (Y t′,a′ |Xt′,a′)

=
X ′t′,a′,i!(Xt′,a′,i − Yt′,a′,i)!

Xt′,a′,i!(X ′t′,a′,i − Yt′,a′,i)!
·
X ′t′,a′,j !(Xt′,a′,j − Yt′,a′,j)!

Xt′,a′,j !(X ′t′,a′,j − Yt′,a′,j)!
(4.25)

when (t′, a′) ∈ SY and 1 otherwise. A similar expression applies to P (Zt|W ′t)
P (Zt|W t)

for sampling

without replacement from juveniles. For sampling with replacement from juveniles we have

P (Zt′ |W ′
t′)

P (Zt′ |W t′)
=
(

W ′
t′,i

Wt′,i

)Zt′,i
(

W ′
t′,j

Wt′,j

)Zt′,j
(4.26)

for t′ ∈ RZ, and 1 otherwise. For the terms having to do with population genetic sampling

into the adult stage, we have

Pλ(X ′t′,a′ |W t′−a′)
Pλ(Xt′,a′ |W t′−a′)

=
Γ(X ′t′,a′,i + Wt′−a′,i/ϕt′,a′)Xt′,a′,i!

Γ(Xt′,a′,i + Wt′−a′,i/ϕt′,a′)X ′t′,a′,i!
·
Γ(X ′t′,a′,j + Wt′−a′,j/ϕt′,a′)Xt′,a′,j !

Γ(Xt′,a′,j + Wt′−a′,i/ϕt′,a′)X ′t′,a′,j !
(4.27)



98

and

Pλ(Xt′+a,a|W ′
t′)

Pλ(Xt′+a,a|W t′)
=

Γ(Xt′+a,a,i + W ′
t′,i/ϕt′+a,a)Γ(Wt′,i/ϕt′+a,a)

Γ(Xt′+a,a,i + Wt′,i/ϕt′+a,a)Γ(W ′
t′,i/ϕt′+a,a)

(4.28)

×
Γ(Xt′+a,a,j + W ′

t′,j/ϕt′+a,a)Γ(Wt′,j/ϕt′+a,a)

Γ(Xt′+a,a,j + Wt′,j/ϕt′+a,a)Γ(W ′
t′,j/ϕt′+a,a)

.

For the terms having to do with population sampling into the juvenile stage we compute

the two relevant ratios using the quantity Bt (defined on Page 86 in Section 4.2.3) and its

altered version B′t when necessary. Thus we have

Pλ(W ′
t′ |Xt′,a− , . . . ,Xt′,a+)

Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)
=

Pλ(W ′
t′ |Bt′)

Pλ(W t′ |Bt′)
(4.29)

=
Γ(W ′

t′,i + Bt′,i/ψt′)Wt′,i!

Γ(Wt′,i + Bt′,i/ψt′)W ′
t′,i!
·
Γ(W ′

t′,j + Bt′,j/ψt′)Wt′,j !

Γ(Wt′,j + Bt′,j/ψt′)W ′
t′,j !

and

Pλ(W t′ |X ′t′,a′ ,X{t′,\a′})
Pλ(W t′ |Xt′,a− , . . . ,Xt′,a+)

=
Pλ(W t′ |B′t′)
Pλ(W t′ |Bt′)

(4.30)

=
Γ(Wt′,i + B′t′,i/ψt′)Γ(Bt′,i/ψt′)

Γ(Wt′,i + Bt′,i/ψt′)Γ(B′t′,i/ψt′)

×
Γ(Wt′,j + B′t′,j/ψt′)Γ(Bt′,j/ψt′)

Γ(Wt′,j + Bt′,j/ψt′)Γ(B′t′,j/ψt′)
.

Both of the above extend immediately to the case of Sampling Scheme II with Bt defined

appropriately (i.e., with the Y t,a’s subtracted out as on Page 87 in Section 4.2.3).

The derivation of the ratios of joint probabilities when non-penetrant alleles are present

proceeds in similar fashion to the above treatment, but is omitted for brevity.

4.3.2 Proposal distributions for X′ and W′

In the preceding, we saw that it is advantageous to consider changes to pairs of alle-

les at a single time and age for X and a single time for W. Consequently the pro-

posal distribution qX can be a function just of those components, and can be written

qX(X ′t,a,i, X
′
t,a,j |Xt,a,i, Xt,a,j , . . .). Since X ′t,a,i + X ′t,a,j must equal Xt,a,i + Xt,a,j , the pro-

posal distribution is simply a distribution on X ′t,a,i, imposing, for uniqueness of reverse

moves in this sampler, the condition i < j.
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The proposal distribution qX(X ′t,a,i|Xt,a,i, Xt,a,j , · · ·) should reflect a compromise be-

tween statistical efficiency and computational efficiency. From a statistical perspective, it

is most efficient to simulate X ′t,a,i, X
′
t,a,j from their full conditional distribution. However,

not much efficiency is gained this way, and calculating the full conditional distribution in-

curs a heavy computational cost. Instead, I define qX to be a uniform distribution with

width determined by the current values Xt,a,i and Xt,a,j . That is, X ′t,a,i is drawn from a

uniform distribution on the integers (excluding the current value, Xt,a,i) between Xlo and

Xhi, inclusive, where the values of Xlo and Xhi are chosen as a linear function of the approx-

imate standard deviation of Xt,a,i conditional only upon its parents in the graph. Namely

Xlo = Xt,a,i − w and Xhi = Xt,a,i + w where w is the greatest integer less than or equal to

2β

(
L + α

1 + α
Xt,a,i(1−Xt,a,i/L)

)1/2

(4.31)

where L = Xt,a,i + Xt,a,j , α = L/ϕt,a, and β is a scaling factor that may be adjusted to

achieve a desired acceptance proportion. It can be tuned automatically during run time if

desired. The width of qW may be tuned similarly.

It is also desirable to include some checking in the computer code to ensure that qX does

not give positive probability to any values of X ′t,a,i which would be incompatible with the

descendants of Xt,a,i and Xt,a,j in the graph.

4.3.3 Proposal distributions for λ

To make updates to λ, we consider changes to just one of its components at a time, λa

for the discussion here. A naive, computationally simple proposal distribution for λa is

less desirable than a full conditional update for λa, because the latter allows for a Rao-

Blackwellized (see Section 1.5.3 on Page 19) Monte Carlo estimator of P (λa|Y,Z). This

does require that the parameter space for λ be discretized. This has little effect on the final

inferences one can make if the discretization is fine enough. For example one could choose

to consider n values for λa say, λa,0, λa,1 . . . , λa,n where λa,i = .02 ∗ i. For most situtations,

this will be a fine enough discretization. Writing Λa for the set {λa,0, . . . , λa,n}, and λ′ for
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λ with its ath component set to λ′a, I use for qλ(λ′a) the full conditional distribution

qλ(λ′a| · · ·) = P (λa|Y,Z,X,W) = P (λ′a|X,W) =
P (λ′)Pλ′(X,W)∑

λ′a∈Λa
P (λ′)Pλ′(X,W)

(4.32)

For each update to λa, (4.32) must be computed for all λ′a ∈ Λa. This is computationally

expensive, but that is more than offset by the fact that at the ith update, one is realizing

the values P (λ′a|X(i),W(i)) for each λ′a ∈ Λa with (X(i),W(i)) being simulated from their

posterior distribution given Y and Z. Therefore the successive values P (λ′a|X(i),W(i))

may be averaged over the course of a run of the Markov chain to yield an efficient, Rao-

Blackwellized estimate of P (λa|Y,Z). Furthermore, since qλ(λa) is the full conditional

distribution for λa, the above scheme defines a Gibbs sampling proposal for λa, and the

Hastings ratio Hλ reduces to unity, always.

In empirical tests, this method of updating λ takes more computational time, but yields

far superior estimates of P (λa|Y,Z) than a naive (i.e., uniform) proposal distribution for

each λa in fewer updates of the chain.

4.4 Special Cases

There are some situations in which it might be advantageous or imperative to consider a

model which is simpler and has fewer parameters than the one just described. One obvious

simplification would be to restrict the λa’s of each age group to be equal. This would be

appropriate if data were only available on juveniles, since in that case the different λa’s

would be unidentifiable. It might also be desirable if data are relatively sparse, and/or if

one has prior reason to believe that λa’s would not differ greatly over different age classes.

Similarly, it is possible to restrict W to match perfectly the allele frequencies implied by

X. This corresponds to the assumption that juvenile populations are very large and all of

the population-genetic sampling that is not random with respect to an individual’s family

of origin occurs in the mortality between juvenile and adult stages. While this restriction

would not allow the independent estimate of a λ for juveniles, it would be prudent in the

case when data are available only on adults or only on juveniles. Any non-random (with

respect to family) sampling that occurred before the juvenile stage would then be estimated

as part of the population-genetic sampling from juvenile to adult.
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4.5 Simulated Data

It is always the case that the process of formulating and describing this type of MCMC

method is far simpler and takes less time than the cycle of implementation, testing, and

debugging that is required to produce software to actually carry out the Markov chain

simulations described. I have not yet been able to test all the parts of the current version

of the software implementing the method described in the chapter. However, I am satisfied

that some of its modules are functioning properly, and the results are sufficiently promising

to present the method’s performance on simulated data. For this purpose I have used the

census data in Table 4.1, from the Inmaha Creek chinook salmon population. These data

appear in Beamsderfer et al. (1998), and were kindly provided to me in electronic format

by Robin Waples at the National Marine Fisheries Service. As in Chapter 2, the purpose

of this demonstration is not to assess the bias and variance of the Bayesian estimator for

λ derived in this chapter. Doing so would require a prohibitive amount of computing in

order to average the results over a large number of simulated datasets. Rather, this section

demonstrates that the MCMC method itself is able to provide a good approximation to the

posterior probability for λ given a single dataset.

Inmaha Creek is a tributary of the Snake River in which the chinook salmon population

has declined dramatically in the last four decades. Fish return at ages 3, 4, and 5. The

3-year-olds are almost all small males called “jacks.” Census size estimates, broken down by

age class, are available for the years 1954 to 1999. While jacks certainly contribute some to

future generations, it is unlikely that the contribution, on a per-fish basis, is nearly as great

as that of four and five year-olds. Further, since there are so few of them, and because their

occasional zero census size estimates cause conflicts with the current version of my software,

they were excluded from the dataset.

Genetic data were simulated for a single locus given these census sizes by initializing a

juvenile pool in year 1949 with 5 alleles having counts in the proportions (.4, .2, .2, .1, .1).

Allele counts in the juvenile pool in years 1950 to 1953 were then considered to be W−4 to

W−1 and were drawn according to the urn scheme describing the prior distribution (Sec-

tion 4.2.5) with C̃ being 900. In other words, W−4 to W−1 were simulated by independent,
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Table 4.1: Estimates of the number of chinook spawners returning to Inmaha Creek (a
tributary on the Snake River drainage) in years 1954 to 1999. Age 3 fish are young males
known as “jacks.” (Data source: Beamsderfer et al. (1998))

Brood Year Age 3 Age 4 Age 5 Brood Year Age 3 Age 4 Age 5

1954 146 507 1079 1977 0 460 230

1955 232 1473 1638 1978 0 87 1914

1956 62 985 619 1979 13 113 124

1957 242 1438 1875 1980 10 87 95

1958 31 508 655 1981 24 214 236

1959 18 231 299 1982 32 279 307

1960 40 655 845 1983 23 206 226

1961 149 341 575 1984 17 219 321

1962 60 678 458 1985 0 363 278

1963 113 207 321 1986 43 214 235

1964 58 684 464 1987 0 139 262

1965 49 385 474 1988 13 92 411

1966 136 385 555 1989 18 85 49

1967 30 666 326 1990 0 70 14

1968 12 450 687 1991 12 36 34

1969 57 843 556 1992 3 58 16

1970 0 350 480 1993 4 81 282

1971 176 1039 529 1994 0 17 34

1972 20 364 1235 1995 3 26 28

1973 0 602 1905 1996 5 130 13

1974 0 590 711 1997 0 95 58

1975 0 139 579 1998 0 39 50

1976 0 306 284 1999 0 0 15
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random draws from an urn containing alleles in the initial frequencies, (.4, .2, .2, .1, .1). The

remaining latent variables X and W were simulated throughout the graph via the urn

scheme described in this chapter, with λ4 = λ5 = 0.4, and using the age-specific fitnesses

of γ4 = 450 and γ5 = 650. These values were obtained by using rough fecundity/length,

length/age, and juvenile survivorship relationships for chinook salmon (both stream- and

ocean-type combined) given in Healey (1991). The latent data were simulated under the

assumption that no genetic drift occurs between the adult and the juvenile stage. Genetic

data were not simulated from 1954 to 1963. However, genetic drift was simulated in the

population during that interval. This allowed the allele frequencies between different years

to settle closer to their joint stationary distribution before starting the simulated sample

collection. Other simulations (Robin Waples, National Marine Fisheries Service, unpub-

lished result) show that 20 years is sufficient to allow the alleles frequencies to “warm-up.”

For the purposes of the present demonstration, ten years should be sufficient.

From 1963 to 1988 I simulated datasets with samples of varying sizes drawn every year

from the same simulated set of latent variables. The three different sample sizes considered

were:

1. S4 = S5 = 10 and R = 30

2. S4 = S5 = 25 and R = 60

3. S4 = S5 = 60 and R = 125

In years when the sample size would have been larger than one half the census size of the

population of a particular age (4 or 5), the sample size for that age group was decreased to

be one half of the census size of the population. Data were not simulated and used for the

last eleven years (1989–1999) of the census data because the small population sizes in those

years meant that even with very small samples from the adult populations, a good estimate

of λ was possible, and I wanted a more challenging scenario for demonstrating the method.

The simulated data were analyzed under the assumption that λ4 = λ5 (which shall

hereafter be referred to as λ) and that no drift occurs in the transmission of genes to the
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juvenile stages; hence W t is completely determined by (Xt,a− , . . . ,Xt,a+). λ values in the

set {.02, .04, . . . , .98} were considered. To reduce burn-in time, X was initialized to the

value that was realized in the original simulation. I have subsequently verified that the

burn-in time required for other reasonable starting configurations (like all allele frequencies

of X initialized to the average frequency of the alleles observed in the samples) is short. A

sweep of the algorithm consisted of:

1. E updates in series, first with a random pair (Xt,a,i, Xt,a,j) between the years 1963

and 1988 and then with a random pair (Wt,i, Wt,j) from the juvenile pools used to

construct the prior distribution in the years 1958 to 1962.

2. An update of λ.

E was chosen so that each component of X was updated twice on average during a sweep. For

the different scenarios I simulated, I performed 70,000 sweeps of the algorithm. Inspection

of the estimated posterior for λ suggests that the estimate changed imperceptibly over the

last 50,000 sweeps of the algorithm. 70,000 sweeps required 2 hours on a laptop computer

with a 266 Mhz G3 (Macintosh) processor.

At each of the different sampling intensities I analyzed the data under the assumption

that all the samples were available (Figure 4.5), and also under the assumption that only

the adult samples were available (Figure 4.6(a)). I also did one simulation in which samples

from the adults were not available, but samples of size R = 125 from juveniles at all

years were available (Figure 4.6(b)). For comparison, I have plotted each of these posterior

distributions next to the posterior distribution that one would obtain if X and W were

known without error.

The results, as shown in Figures 4.5 and 4.6, suggest that the MCMC sampler is function-

ing appropriately and computing the posterior distribution for λ. The curvature generally

decreases with sample size, reflecting the loss of information, as it should.2 Furthermore,

2The posterior distribution for sample sizes S = 25, R = 60, being more peaked than the posterior
distribution for S = 60, R = 125, is an exception to the trend. This results from the fact that for the
particular set of data simulated for S = 25, R = 60, the estimated λ happens to be smaller than for the
data simulated with S = 60, R = 125. The credible set will be smaller for a lower estimated value of λ
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Figure 4.5: Plot of the posterior probabilities for λ = λ4 = λ5 from genetic data simulated
on the Inmaha Creek chinook population (Table 4.1), when data were available on both
adults and juveniles. The first line in the graph corresponds to the estimate with the latent
variables known without error. The other three lines correspond to the different sample
sizes of adults and juveniles. The true λ4 = λ5 = 0.4.
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Figure 4.6: Graphs as described in Figure 4.5, but under different sampling scenarios. (a)
Juvenile sample sizes all zero, and adult sample sizes as shown. (b) Adult sample sizes not
all zero, but samples of 125 taken each year from the juveniles.



107

in all cases except one, the 90 percent credible interval for λ overlaps the true value of

0.4. While the narrowest posterior distributions occur with samples from both adults and

juveniles, there still seems to be a substantial signal in the data, even when samples are

taken either only from adults or only from juveniles.

4.6 Discussion

These results are encouraging. They demonstrate that the MCMC sampler devised here

is able to compute the posterior probability distribution for λ, suggesting that the method

presented in this chapter permits use of data over multiple years from a salmon population

with known census sizes to estimate the ratio λ with good precision. It should be kept in

mind that these simulations exploit the data from only a single locus with five alleles. Nar-

rower credible sets would be obtained with data on multiple loci. The posterior distribution

for λ given data on multiple, independently segregating loci is proportional to the product

of the posterior probabilities for λ from each of the loci treated separately, as described

here. Therefore, the extension to multiple loci is simple.

The method developed herein would be particularly appropriate for estimating λ in

hatchery populations of salmon where the census sizes of spawning adults are well known. As

in the previous chapter, the method thus far developed in the current chapter assumes that

λ remains constant over time. Future work is required to assess how robust this estimate

is to departures from the underlying model. However, like the method of Chapter 3, it

would also be possible here to propose new models in which λ varied over time, and to

compare those models within a Bayesian framework using reversible jump MCMC (Green

1995). Such a method would be well-suited to using genetic data to detect the impact of

supportive breeding programs (Ryman and Laikre 1991; Hansen et al. 2000) on λ in

salmon populations.

because, when λ is smaller, then the amount of genetic drift expected will be larger, relative to the amount
of error due to random sampling of genes. In other simulations (not shown) in which the maximum a
posteriori estimate of λ for the simulated data with S = 25, R = 60 was closer to that for the simulated
data with S = 60, R = 125, the credible set is wider for the dataset with smaller samples.
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Chapter 5

BAYESIAN INFERENCE IN MIXED

AND ADMIXED POPULATIONS

5.1 Introduction

Populations studied by geneticists are seldom the ideal, randomly-mating and genetically-

isolated collections of individuals for which much genetic theory has been developed. In

particular, natural populations may possess internal structure which prevents random mat-

ing, or they may be recently formed by migration and co-mingling of individuals from two

or more originally separate populations. Such structure complicates many types of genetic

studies. For instance, when using population-level data to map genetic diseases, population

structure, if not accounted for, may lead to spurious associations between genetic mark-

ers and disease status (Ewens and Spielman 1995). Additionally, in the ecological study

of plants and animals there is considerable interest in population structure, especially in

regions of apparent overlap and interbreeding between different subpopulations—so-called

“hybrid zones.” For these, and other types of problems, it is desirable to be able to infer

population structure from genetic data. To this end, models of population genetic mixture

and admixture have been useful. I describe the application of such models to the inference

of population structure, focusing primarily on applications to hybrid zones of two differ-

ent groups of individuals. Such situations are now encountered frequently as a result of

anthropogenic disturbance reducing barriers to gene flow between formerly separate sub-

populations. Invasions of exotic species are one pervasive example.

As used here, a “genetic mixture model” attributes structure in a population to the

presence of two or more subpopulations. Within these subpopulations individuals may mate

at random, but no interbreeding occurs between subpopulations. Every individual in the

mixture is considered to be a purebred descendant of only one subpopulation. Such models
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have been developed and used extensively in the field of fisheries management (Milner et al.

1981; Pella and Milner 1987; Smouse et al. 1990; Millar 1991; Pella and Masuda

2001).

On the other hand, admixture, throughout the genetics literature (Cavalli-Sforza

and Bodmer 1971; Thompson 1973; Wijsman 1984; Long 1991) refers to interbreeding

between members from different subpopulations. Accordingly, a “genetic admixture model”

attempts to model a population’s genetic structure by the presence of two or more previously

separate subpopulations between which there has been some recent interbreeding. Such a

population is said to be admixed. Additionally we will call an individual “admixed” if

it possesses genes descended from more than one of the historically separate populations.

Early investigations of admixed populations sought to estimate the relative contributions of

two founding populations to the admixed population. These studies assumed the admixed

population had undergone enough generations of random mating to eliminate the allelic

associations between loci that accompanies genetic admixture. In such cases, the individual

allele frequencies observed in the two founding subpopulations and the admixed population

are the sufficient statistics. It was not until recently that statistical methods were proposed

whereby the Hardy-Weinberg and linkage disequilibrium information captured in multilocus

data could be used to elucidate structure in a recently admixed population (Rannala and

Mountain 1997; Paetkau et al. 1995; Pritchard et al. 2000).

Pritchard et al. (2000) propose a versatile model for genetic inheritance in admixed

populations and use it in Bayesian analyses of population structure in several different

species. A limitation of this model, however, is that it assumes every individual is admixed

to some degree. In many situations, such as with populations spanning hybrid zones, there

is reason to expect both purebred and admixed individuals. A probability model to accom-

modate such scenarios will include elements both of genetic mixture models and genetic

admixture models. In this chapter, I extend the methods of Pritchard et al. (2000) to

handle explicitly purebred individuals.

In sections 5.2 and 5.3, I review mixture and admixture formulations for modeling pop-

ulation structure. In Section 5.3.1, I develop a method for making joint, Gibbs updates

of large blocks of variables in the Pritchard et al. (2000) model. The method uses the
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fact that the latent allocation variables of an i.i.d. finite mixture, with a Dirichlet prior on

mixing proportions can be shown to follow a hidden Markov chain, after integrating out the

mixing proportions. This computation facilitates MCMC simulation in a model, described

in Section 5.4, that allows for both purebred and admixed individuals. Additionally, I de-

scribe in the Discussion how such a method could help the Gibbs sampler to escape from

trapping states (Robert 1996) encountered in other finite mixture problems.

I apply these techniques to data on the Scottish wildcat Felis sylvestris. In Scotland,

F. sylvestris evolved for thousands of years with little or no genetic exchange with cats in

continental Europe. Within the last 2,000 years these Scottish cats have suffered popu-

lation declines due to human influences and have been exposed to possible interbreeding

with domestic cats. It can be difficult to distinguish F. sylvestris from domestic cats on

the basis of morphological characters alone and conservation biologists are concerned that

the wild-living cats in Scotland may now represent an admixture of F. sylvestris and do-

mestic cats. These data were previously analyzed by Beaumont et al. (2001) using the

method of Pritchard et al. (2000). However, this analysis does not address the issue of

particular interest—that of estimating the proportion of purebred F. sylvestris individuals

in the population. Nor does that analysis allow estimation of posterior probabilities that

particular individuals in the sample are purebred cats. These questions about the Scottish

wildcat population are similar to those for many species of conservation interest to which

the present methods apply.

Finally, using reversible-jump MCMC, it is possible to compute the Bayes factor for

comparing the new, expanded model to that of Pritchard et al. (2000) given the Scottish

cat data. While the reversible-jump sampler allows estimation of the true Bayes factor, it

is also possible to compute the “pseudo-Bayes factor” (Gelfand et al. 1992), and assess

how accurately that estimates the Bayes factor.

5.2 Genetic Mixture Models

The formulation of a genetic mixture model follows that for a general finite mixture. Let

N diploid individuals be sampled from a population and typed at L loci. The population
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is assumed to consist of J subpopulations indexed by j = 1, . . . , J . The proportion of

individuals in the mixed population from subpopulation j is the unknown parameter πj

with
∑J

j=1 πj = 1. Assign to each individual a latent allocation variable Zi, i = 1, . . . , N .

We use Zi = j to indicate that the ith individual is from the jth subpopulation.

Denote the multilocus phenotype of the ith individual by Y i. I use “phenotype” as

opposed to “genotype” because the phrase “multilocus genotype” sometimes implies knowl-

edge of the gametic phase of the alleles present at different loci. No such knowledge is

available here. The multilocus phenotype, Y i, consists of the allelic type of each of the two

alleles carried by the ith individual at L loci. Since we will later identify and label specific

gene copies in an individual, we consider the two alleles carried at a locus to be ordered.

This order may be arbitrary. For example, it can merely be the order in which the types

of those two alleles are reported in the data on an individual. Thus, Y i can be regarded

as a vector of length 2L with its first element giving the allelic type of the first allele at

locus 1, its second element giving the type of the second allele at locus 1, its third element

the type of the first allele at locus 2 and so forth. In general, Yi,t, t = 1, . . . , 2L, is the type

of allele number (t [mod 2] + 1) at locus number dt/2e in individual i, where dxe denotes

the smallest integer greater than or equal to x and t [mod 2] is the remainder after dividing

t by 2.

The allele frequencies in the jth subpopulation are denoted by Θj = (θj,1, . . . ,θj,L),

where θj,`, ` = 1, . . . , L, is a vector of length equal to K`—the number of distinct types

of alleles observed at locus ` across all the individuals sampled. The frequency in the

jth subpopulation of the kth allelic type of the `th locus is θj,`,k, k = 1, . . . , K`. We will

adopt the notation θ〈j;Yi,t〉 to mean θj,`,k where ` = dt/2e and k is the allelic type of the

(t [mod 2] + 1)th allele at the `th locus in the ith individual.

Given that an individual is from subpopulation j, it is assumed to have a multilocus

phenotype resulting from random mating and linkage equilibrium between the L loci within

subpopulation j. Thus,

P (Y i|Θj , Zi = j) =
2L∏
t=1

θ〈j;Yi,t〉 (5.1)

where P (·|·) will be used throughout to denote conditional probability mass or density
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functions. The likelihood for π = (π1, . . . , πJ) and Θ = (Θ1, . . . ,ΘJ), with Y denoting

(Y 1, . . . ,Y N ), is

P (Y|π,Θ) =
N∏

i=1

P (Y i|π,Θ) =
N∏

i=1

J∑
j=1

πjP (Y i|Θj , Zi = j). (5.2)

Note that the product in (5.1) does not include the familiar binomial coefficient, 2, for

heterozygotes because we have arbitrarily ordered the two alleles carried by an individual

at each locus. This makes the likelihood in this model comparable to that in the admixture

model of Pritchard et al. (2000).

“Training” or “learning” samples may be available. They might take the form of specially

tagged individuals which, though sampled along with the rest of the mixture, may be

unambiguously assigned to a subpopulation. Such an individual, say i∗, known to come from

subpopulation j∗, is easily accommodated by setting zi∗ = j∗ and defining P (Y i∗ |Θj , Zi∗ =

j) ≡ 0 for all j 6= j∗. However, if a learning sample from the jth subpopulation is drawn

separately (for example, if taken during a season when the subpopulations can be sampled

separately) it contributes a term of the form C ·
∏L

`=1

∏K`
k=1 θ

nj,`,k
j,`,k to the likelihood, where

C is a product of multinomial coefficients and nj,`,k is the number of alleles of type k

observed at locus ` in the learning sample taken separately from the jth subpopulation. (In

the Bayesian framework, these changes are equivalent to altering the prior for Θ and π

appropriately.)

Treating this mixture model from the Bayesian perspective requires prior distributions

for π and Θ. The conjugate prior for π is the Dirichlet distribution, Dir(ζ1, . . . , ζJ). Prior

information could be incorporated in the values of the ζj , or, if no prior information is

available, the uniform distribution ζj = 1, j = 1, . . . , J , is a reasonable choice when J is

not large. The conjugate prior for each Θj,` is Dir(λj,`,1, . . . , λj,`,K`
). In this chapter, I

use uniform Dirichlet priors, λj,`,k = 1 ∀j, `, k, which tend to de-emphasize the influence of

rarely-occurring allelic types. This is a conservative assumption, and works well when the

subpopulations are sufficiently genetically distinct. Note, however, that Pritchard et al.

(2000) discuss different Dirichlet priors and Pella and Masuda (2001), who independently

developed the same Bayesian scheme for genetic mixture analysis, describe other approaches

to assigning allele frequency priors in mixed-stock fishery problems with closely-related
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subpopulations.

With the priors specified, the posterior distribution of π and Θ, as well as other quan-

tities of interest, may be investigated via Gibbs sampling as described by Diebolt and

Robert (1994). The relevant full conditionals are

π| · · · ∼ Dir(ζ1 + #{Z = 1}, . . . , ζJ + #{Z = J})

θj,`| · · · ∼ Dir(λj,`,1 + mj,`,1 + nj,`,1, . . . , λj,`,K`
+ mj,`,K`

+ nj,`,K`
),

j = 1, . . . , J ; ` = 1, . . . , L

P (Zi = j| · · ·) =
πjP (Y i|Θj , Zi = j)∑J

k=1 πjP (Y i|Θj , Zi = k)
, i = 1, . . . , N ; j = 1, . . . , J

where #{Z = j} is the number of individuals currently allocated to subpopulation j, mj,`,k is

the number of alleles of type k at locus ` in individuals currently allocated to subpopulation

j, and the nj,`,k are, as before, the allele counts from the learning samples (if any) drawn

separately from the mixture sample.

5.3 A Model with Admixed Individuals

With Θ and Y defined as in the previous section, the model of Pritchard et al. (2000)

is quickly described. Now, j indexes the J conceptual “gene pools” or “historical sub-

populations” from which individuals may be descended. Allowing for admixed individuals

requires a different model of genetic inheritance, which, in turn, requires different latent vari-

ables. For the ith individual in the sample, a vector of probabilities Qi = (Qi,1, . . . , Qi,J),∑J
j=1 Qi,j = 1, denotes the unobserved proportions of that individual’s genome descended

from each of the J gene pools. Also, let W i = (Wi,1, . . . , Wi,2L) be a vector of unobserved

allocation variables which is parallel to the the vector of allelic types Y i. Hence, Wi,t = j

indicates that the (t [mod 2]+1)th allele at the dt/2eth locus in the ith individual is from the

jth gene pool. Given Wi,t = j the type of allele is assumed to be drawn randomly according

to θj . Under this model

P (Y i|Θ,W i) =
2L∏
t=1

θ〈Wi,t;Yi,t〉 (5.3)
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independently for each i. By assigning the prior Qi ∼ Dir(α, . . . , α), i = 1, . . . , N , and the

hyperprior α ∼ Uniform(0, A], Pritchard et al. (2000)’s model is obtained. In effect this is

a hierarchical model for N different finite mixtures—the genes carried by the ith individual

are a sample from a mixture with mixing proportions given by Qi, while the Qi themselves

(i = 1, . . . , N) are drawn from a symmetrical Dir(α, . . . , α) distribution. This model allows

for individuals to carry alleles in Hardy-Weinberg and linkage disequilibrium with respect to

the allele frequencies found in the single, admixed population. The method of Pritchard

et al. (2000) indirectly uses the information in this disequilibrium (which may occur even

between unlinked loci) to assign genes to different subpopulations or “gene pools.”

Gibbs sampling proceeds using the full conditionals

Qi| · · · ∼ Dir(α1 + #{W i = 1}, . . . , αJ + #{W i = J}), i = 1, . . . , N

θj,`| · · · ∼ Dir(λj,`,1 + rj,`,1, . . . , λj,`,K`
+ rj,`,K`

),

j = 1, . . . , J ; ` = 1, . . . , L

P (Wi,t = j| · · ·) =
Qi,jθ〈j;Yi,t〉∑J

k=1 Qi,jθ〈k;Yi,t〉
, i = 1, . . . , N ; j = 1, . . . , J ;

t = 1, . . . , 2L

where #{W i = j} is the number of alleles in the ith individual currently allocated to gene

pool j and rj,`,k denotes the number of alleles of type k at locus ` currently allocated to gene

pool j. Pritchard et al. (2000) update α by a Metropolis-Hastings method as described

in Section 5.5. The posterior distribution of α thus estimated provides some insight into

the degree to which admixture has occurred across individuals.

Learning samples would be available if there were substantial prior knowledge about the

gene pools contributing to the admixture and if known, purebred descendants from them

were separately sampled. By assuming any effects of genetic drift to be negligible, such

samples could be treated as learning samples in the mixture model. The full conditional for

θj,` would then be modified to include the nj,`,k as before.
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5.3.1 Block-updating W i when J = 2

In many situations involving invasions of exotic species, there is substantial prior knowl-

edge that the number of major subpopulations or “gene pools” involved is two—the native

population and the invading population. Additionally, many hybrid zones are known to

be areas of hybridization (admixture) between two species or populations. Here I present

novel computations, feasible when only two subpopulations or gene pools are involved, that

eliminate the explicit need for the variable Q = (Q1, . . . ,QN ) in implementing a Gibbs

sampler. Such a method slightly improves mixing of the chain, but is primarily useful as it

makes possible Gibbs sampling in a simultaneous mixture and admixture analysis described

in Section 5.4.

The computations themselves may be derived as follows. Let J = 2, so that each allele

in an individual may have originated from gene pool 1 or gene pool 2. Then, each Qi,1

will follow a Beta(α, α) distribution and Qi,2 = 1 − Qi,1. Conditional on Qi,1, each Wi,t

will then be independently a Bernoulli trial with P (Wi,t = 1|Qi,1) = Qi,1. Marginalizing

over Qi,1 (not conditioning on the data) it follows that #{W i = 1} follows a beta-binomial

distribution with parameters (α, α). Of course, each allele in an individual is uniquely

labelled so the elements of W i may be interpreted as following a labelled beta-binomial

distribution. Under such a distribution, the elements of W i are not independent, but they

are exchangeable (deFinetti 1972), and hence their marginal distributions are invariant

to permutations of their order (and thus the arbitrary order we have imposed upon them is

acceptable).

This labelled beta-binomial sampling mechanism can be interpreted as arising from a

Pólya-Eggenberger urn scheme (Feller 1957; Johnson and Kotz 1977). Imagine an urn

initially filled with b1 balls labelled “1” and b2 balls labelled “2.” Draw a ball randomly and

record Wi,1 = 1 or 2 according to the ball’s label. Then replace the ball to the urn, adding,

at the same time, c more balls of the same type (1 or 2) as the ball just drawn. Repeat

the process, assigning a value to Wi,2 and so forth until Wi,2L has also been assigned a 1

or 2. If b1, b2, and c were chosen to satisfy b1/c = b2/c = α, then the resulting vector

W i would be a realized value from the labelled beta-binomial distribution with parameters
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(α, α). (One should notice, also, that this extends to a non-symmetrical beta distribution,

say Beta(α1, α2), by choosing b1/c = α1 and b2/c = α2.)

By such a scheme it is apparent that if Dt balls of type 1 have been drawn in the first t

drawings from the urn, then the probability that the next ball drawn is a 1 is given by

b1 + Dtc

b1 + b2 + tc
. (5.4)

And so the pairs (Wi,t, Dt), t = 1, . . . , 2L, can be interpreted as forming a Markov chain

in time t with time-inhomogeneous transition probabilities determined by (5.4) and the

obvious fact that Dt+1 = Dt + I{Wi,t+1 = 1}, where I{X = a} takes the value one when

X = a and zero otherwise. This Markov chain dependence structure was previously noted

by Freedman (1965), who used it to obtain limiting distributions of quantities associated

with urn models.

The foregoing has all been considered in the absence of data, Y i. However, given

Θ, the data provide some information about the true value of each Wi,t by the relation

P (Yi,t|Wi,t,Θ) = θ〈Wi,t;Yi,t〉. Therefore, conditional on Θ and Y i, the pairs (Wi,t, Dt)

participate in a hidden Markov chain. Recognition of this fact allows application of a

“filter-forward, simulate-backward” type of algorithm which may be derived following the

computations of Baum et al. (1970) in order to realize the elements of W i from their joint

full conditional distribution, P (W i|α,Θ,Y i). Furthermore, using the Baum (1972) algo-

rithm, it is possible to compute P (Y i|α,Θ), effectively performing a sum over all possible

binary vectors of length 2L in an efficient manner. This is described below.

Take b1, b2, and c as defined above. Suppressing the i subscript for clarity, let Wt ∈ {1, 2},
t = 1, . . . , 2L, and define Dt =

∑t
τ=1 I{Wτ = 1}. We adopt the notation W≤t (W≥t) to

mean W1, . . . , Wt (Wt, . . . , W2L) for components of W , and use the same notation with Y

and D. The pairs (Wt, Dt) can be interpreted as following a Markov chain in t:

P (Wt+1, Dt+1|W≤t, D≤t) = P (Wt+1, Dt+1|Wt, Dt)

=
b1 + dtc

b1 + b2 + tc
I{Dt+1 = Dt + I{Wt+1 = 1}}.

The “perturbed” or “degraded” observations of the chain are the allelic types Y1, . . . , Y2L

which depend in hidden Markov fashion on W . For notational clarity, we assume implicit
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D1 D2 D3 D4 · · · D2L−1 D2L

W1 W2 W3 W4 · · · W2L−1 W2L

Y1 Y2 Y3 Y4 · · · Y2L−1 Y2L

· · ·

Figure 5.1: An undirected graph showing the dependence between W i, D = (D1, . . . , D2L)
and Y i in Section 5.3.1. This graph describes hidden Markov structure for the pairs
(Wi,t, Dt). Note that in the figure the i subscript has been omitted on the elements of
W i and Y i. The dependence on θ is implicit and not shown.

dependence on the allele frequencies Θ,

P (Yt|W≤2L, D≤2L) = P (Yt|Wt) = θ〈Wt;Yt〉.

This dependence structure is shown in the undirected graph of Figure 5.1.

In the forward step we compute and store values of P (Wt, Dt|Y≤t) for Wt = 1, 2 and

Dt = 0, . . . , t, recursively for t = 1, . . . , 2L, by the relations

P (Wt+1, Dt+1|Y≤t) =
∑

1≤Wt≤2

P (Wt+1, Dt+1|Wt, D
∗
t )P (Wt, D

∗
t |Y≤t) (5.5)

where D∗t = Dt+1 − I{Wt+1 = 1}, and

P (Wt+1, Dt+1|Y≤t+1) =
1

φt+1
P (Wt+1, Dt+1|Y≤t)P (Yt+1|Wt+1, Dt+1) (5.6)

where

φt+1 = P (Yt+1|Y≤t) =
∑

1≤Wt+1≤2
0≤Dt+1≤t+1

P (Wt+1, Dt+1|Y≤t)P (Yt+1|Wt+1, Dt+1). (5.7)

At the end of the forward step, notice that
∏2L

t=1 φt = P (Y1, . . . , Y2L), which in the

context of the Gibbs sampler (and if we were to reinstate the i subscript) is the desired

quantity P (Y i|α,Θ) for the ith individual. At the end of the forward step we have also

obtained the distribution P (W2L, D2L|Y≤2L). After simulating values for W2L and D2L from

that distribution, we are in a position to simulate values for Wt going backwards recursively
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for t = 2L− 1, 2L− 2, . . . , 1, using the conditional distributions stored during the forward

step and the values just realized for Wt+1 and Dt+1. The backward step uses the following

relations recursively to compute the conditional distribution from which to realize values of

(Wt, Dt):

P (Wt, Dt|Y≤2L, W≥t+1, D≥t+1) = P (Wt, Dt|Y≤t, Wt+1, Dt+1)

=
1
ψt

P (Wt, Dt|Y≤t)P (Wt+1, Dt+1|Wt, Dt), (5.8)

where ψt is a normalizing constant

ψt =
∑

1≤Wt≤2

P (Wt, D
∗
t |Y≤t)P (Wt+1, Dt+1|Wt, D

∗
t ) (5.9)

and where, again, D∗t = Dt+1−I{Wt+1 = 1}. It is apparent that a realization of the variable

(W1, . . . , W2L) thus obtained is drawn from the distribution of W1, . . . , W2L conditional on

Y≤2L. As such, in the context of the Gibbs sampler, and reinstating the i subscript, it is a

realization from P (Wi|α,Θ,Y i) for the ith individual, as desired.

The amount of computation required for the backward step is linear in L. The forward

step at time t requires a handful of elementary operations for each of the 2t states that

the pair (Wt, Dt) may take. This makes the entire forward step O(L2) for the case of two

subpopulations. Depending on how many loci are available this will typically be compu-

tationally reasonable. However, extending this method to J > 2 will be computationally

difficult. With J > 2, Dt becomes a vector whose elements record the number of balls of

type 1, . . . , J which have been drawn up to and including time t. The number of possible

states for the pair (Wt, Dt) is then J(t + J − 2)!/[(t− 1)!(J − 1)!] which gets large rapidly

with t and J .

5.4 A Model for Simultaneous Population Mixture and Admixture

Continuing in the case of two subpopulations (J = 2), a common goal in applications is

to identify purebred versus admixed individuals and to estimate the proportion of those

types in the population. This corresponds to partitioning one’s sample into purebred and
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admixed groups. The ith individual’s inclusion in one of the two groups can be denoted by

a latent variable Vi taking the values

Vi =

 P, if purebred

A, if admixed following the Pritchard et al. (2000) model

Using the calculation of Section 5.3.1, this partition problem can be treated as a mixture

problem using Gibbs sampling. The proportion of individuals of the two types in the

population are given by the new parameter ξP and ξA = 1 − ξP. The full conditional

distribution for Vi is then, for example, for Vi = P

P (Vi = P| · · ·) =
ξPP (Y i|α,Θ, Vi = A)

ξPP (Y i|π, θ, Vi = P) + ξAP (Y i|α, θ, Vi = A)
. (5.10)

Calculating the necessary phenotype probabilities, P (Y i|π,Θ, Vi = P) and P (Y i|α,Θ, Vi =

A), has been described in Equation 5.2 and Section 5.3.1.

The conjugate prior for ξP is Beta(δP, δA) which gives the full conditional

ξP| · · · ∼ Beta(δP + #{V = P}, δA + #{V = A}). (5.11)

I have used a uniform (δP = δA = 1) prior for ξP.

In this expanded model, which we will call model MP,A a sweep consists of

1. Gibbs update for π using only the individuals with vi = P,

2. Gibbs update for Θ where contributions to the full conditionals are determined by Zi

for individuals with Vi = P and by W i for those with Vi = A,

3. Gibbs updates for each individual’s Zi if vi = P and for wi if vi = A,

4. Gibbs update for ξ from Equation 5.11,

5. Gibbs update for each Vi using Equation 5.10,

6. Metropolis-Hastings update for α as described in Section 5.5.
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The output from the resulting Markov chain can provide Rao-Blackwellized (Liu et al.

1994) estimates for the posterior probability that individuals in the sample are purebred or

admixed as well as estimates of the posterior distributions for ξ, π, Θ, α, and each Qi given

Vi = A (though the Qi’s are not necessary for running the chain, they may still be realized

from their full conditional distributions and they provide good summary statistics).

5.5 Metropolis Updates for α

The method of Metropolis sampling is used to update values of α. A new value for α,

denoted α∗, is drawn from a proposal distribution. Since α is constrained to the interval

(0, A], I use a folded normal distribution, centered at α. Hence a variable a is drawn from

a Normal(α, σ2) distribution. If 0 < a ≤ A then α∗ = a. Otherwise if −A ≤ a < 0 then

α∗ = −a and if A < a ≤ 2A then α∗ = 2A − a. In all other cases (a < −A or a > 2A)

the proposal is rejected without further consideration. The proposal density is then still

symmetrical

h(α∗|α) = N (α∗;α, σ2) +N (−α∗;α, σ2) +N (2A− α∗;α, σ2) = h(α|α∗)

with N (α∗;α, σ2) denoting the normal density function of α∗ having mean α and variance

σ2. The standard deviation, σ, of the proposal distribution requires some tuning. Under

model MA, σ ≈ .12 seems to work well, while when individuals may be purebred or admixed

(model MP,A) then σ ≈ .5 encourages better mixing for the Scottish cat data.

The proposed value α∗ is accepted as the new value with probability given by the mini-

mum of 1 or the Hastings ratio. For Pritchard et al. (2000)’s model, using, the qi’s, the

acceptance probability is

min

{
1,

∏N
i=1D(Qi;α∗, J)∏N
i=1D(Qi;α, J)

}
where D(Q;α, J) denotes the density of a Dirichlet random vector Q of J components with

all J parameters equal to α.

When able to eliminate the Qi’s (as in Section 5.3.1), then with only admixed individuals

(model MA) the acceptance probability may be written as

min

{
1,

∏N
i=1 P (Y i|α∗,Θ)∏N
i=1 P (Y i|α,Θ)

}
.
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In the model MP,A which includes both purebred and admixed individuals, the acceptance

probability is

min

{
1,

∏N
i=1[ξPP (Y i|π,Θ, Vi = P) + ξAP (Y i|α∗,Θ, Vi = A)]∏N
i=1[ξPP (Y i|π,Θ, Vi = P) + ξAP (Y i|α,Θ, Vi = A)]

}
.

5.6 Data and Results

The data from Scottish wildcats were provided by Mark Beaumont (University of Reading,

UK) and are fully described in Beaumont et al. (2001). The dataset is freely available

at http://www.rubic.rdg.ac.uk/mab/data.html. Briefly, genetic samples were collected

from wild-living cats throughout Scotland by a variety of methods including trapping and

tissue collection from road kills and carcasses. Samples were also obtained from 13 museum

specimens. In all, 230 wild-living cats were sampled and typed at eight microsatellite loci

with numbers of alleles ranging from nine to 17 per locus. Additionally, 74 housecats were

typed at those eight loci using blood samples from veterinary centers in the south of England.

These 74 cats can be considered a learning sample for the domestic cat subpopulation.

I analyzed the data under model MP,A using runs of length 62,000 sweeps of ten different

chains started from overdispersed starting points by initializing values of all parameters

(α,Θ, ξP,π) with values simulated from their prior distributions. All ten chains converged

very quickly to the same part of the parameter space. The first 2,000 sweeps were discarded

as burn-in, as observing the estimated scale reduction potential factor (Gelman 1996)

suggests this is more than adequate burn-in. I give the results in the next section. I

performed an analogous run under model MA and compare the differences between the

results obtained under MP,A and MA in Section 5.6.2. For each run I used an upper bound

of A = 3 for the parameter α. Each run took 11 hours on a laptop computer with a 266

Mhz G3 (Macintosh) processor.

It should be noted that the learning sample of housecats breaks the symmetry in the

posterior with respect to permutations on the labels for the two components (F. sylvestris

and housecats) in the model. Thus, there is not a substantial label-switching (Stephens

2000) problem in this case.
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5.6.1 Results for model MP,A

The posterior mean estimate of ξP, the proportion of purebred cats, is .65, with a 90%

credible set spanning the range from .47 to .79. The category of purebred cats includes both

pure F. sylvestris and pure housecats found in the admixed sample (but not the housecats

in the learning sample). The MCMC estimate of the posterior density of ξP is given in

Figure 5.2(a). The distribution is long-tailed to the left. These low values of ξP coincide

with low values of the parameter α (Figure 5.2(d)). This correlation is expected; when α

is low, then admixed individuals are expected to have admixture proportions near to zero

or one, and hence the ability to distinguish between admixed and purebred individuals is

diminished. The estimated posterior density for α itself is shown in Figure 5.2(c). It has a

peak around 0.7, and tapers off with larger values, but it is still rather high at the upper

bound imposed on it of 3. The choice of A = 3 is clearly a choice of prior to which the final

result will be sensitive. A larger A would reduce the posterior probability for low values of

ξP, reducing the skewness of the posterior for ξP and increasing its posterior mean estimate.

This issue will be taken up again in the Discussion.

Figure 5.2(b) gives the estimated posterior density for the probability that a cat is

F. sylvestris conditional on its being of purebred type. The posterior mean is .83 with a

90% credible interval from .73 to .94. This suggests that a large proportion (> 53%) of

the wild-living cats in Scotland are purebred F. sylvestris. On the other hand, there is

evidence that between 21% and 53% of the wild-living cats are admixed individuals with

ancestry from both F. sylvestris and domestic cats. Further, it cannot be ruled out that

some wild-living cats are pure housecats that have gone feral.

Figure 5.3 summarizes the results for individual cats. On the horizontal axis is the

posterior probability of being purebred. On the vertical axis is the posterior probability of

being F. sylvestris conditional on being purebred. A cluster in the upper right represents

102 of the cats in the sample, all with posterior probability of being pure greater than

.80. Given that these cats are pure, they have posterior probability close to one of being

F. sylvestris. Also evident is a small cluster of cats with P (Vi = P|Y) > .65 but which, if

they are purebred cats, are almost certainly domestic cats. At the other end of the scale
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Figure 5.2: Graphical summaries of the aggregate-level parameters for the Scottish cat
dataset. (a–c) are unsmoothed posterior density estimates taken by scaling histograms
with bin widths of 0.01 in (a) and (b) and 0.03 in (c): (a) proportion of purebred cats,
ξP in the population from which the cats were sampled, (b) proportion of cats, π1, from
the F. sylvestris subpopulation, conditional on being purebred, (c) the parameter α. (d) a
scatterplot of 5,000 pairs (α, ξP) sampled from the Markov chain. The two parameters are
clearly correlated. Lower values of α correspond to lower values of ξP, as expected. The
correlation is most apparent for values of α less than 1.5. For α > 1.5, the value of α has
little effect on the value of ξP.
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Figure 5.3: A plot of posterior mean estimates for P (Vi = P) on the horizontal axis against
P (Zi = “F . sylvestris”|Vi = P) on the vertical axis. Each open circle represents one of the
230 wild-living cats in the sample. The cluster in the upper right includes 120 individuals
all with posterior probability of being purebred F. sylvestris greater than .80. At far left
are some eight individuals with high posterior probability of being admixed. For cats with
intermediate estimates of P (Vi = P|Y), the credible sets tend to be quite wide (not shown).

are several cats with very high probability of being admixed.

5.6.2 Comparison of results for models MP,A and MA

For parameters shared by MA and MP,A, the estimates differ between models most for α.

Under MA, α is much smaller, so as to accommodate the purebred cats as admixed individ-

uals with admixture proportions close to 0 or 1 (Figure 5.4). Additionally, a significantly

smaller proportion of the alleles in the sample get allocated to the housecat population un-

der MP,A than under MA. Histograms of the proportion of alleles allocated to the housecat

subpopulation for MP,A and MA are shown in Figure 5.5.

5.7 Bayesian Model Comparison

Once able to entertain the model MP,A, it is natural to ask whether that expanded model

has gained us anything. One way to pose the question is to ask whether the data provide

more support for MP,A than for the model we will call MA which requires all individuals to
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126

be admixed and governed by a single α. This may be assessed via the Bayes Factor (Kass

and Raftery 1995), B = P (Y|MP,A)/P (Y|MA). A rough estimate of B might be obtained

by observing the proportion of time the Markov chain defined under MP,A spends in states

with zero or almost zero individuals allocated to the purebred group (since retricting ξP

to zero in MP,A essentially gives MA). However, this is unsatisfactory as there is no prior

probability mass on the point ξP = 0. Furthermore, the chain may visit states with low ξP

so infrequently, that it is impossible to get a good estimate of B that way.

Gelfand et al. (1992) suggest approximating B by the “pseudo-Bayes factor” formed

as the product over all observations of the ratio of cross-validitation predictive densities

under the two models. The cross-validation predictive density for the ith individual, may be

approximated by the harmonic mean of the values P (Y i|α(s),Θ(s)) under MA and the values

P (Y i|α(s),π(s),Θ(s), ξ
(s)
P ), computed as the denominator in (5.10), under MP,A, where the

superscript (s) denotes the states visited by the chain over which the harmonic mean is

taken. Raftery (1992) cautions that the pseudo-Bayes factor, being akin to a pseudo-

likelihood, may be an inaccurate approximation to the Bayes factor and should not be used

for model comparison if the latter is available. However as discussed by Pritchard et al.

(2000), it is difficult to estimate reliably the marginal likelihood P (Y |MA), and the same

is true for P (Y |MP,A), making computation of the Bayes factor by that route challenging.

As an alternative, I have developed a reversible-jump MCMC scheme (Green 1995)

for computing the Bayes factor. While reversible jump methods have recently received

widespread attention for sampling over numerous models in complex model spaces (Rue

and Hurn 1999; Dellaportas and Forster 1999; Giudici and Green 1999), it seems

they have been used less often when a small number of closely-related models are being

considered, as in the present case. The posterior distributions estimated from separate runs

under MP,A and MA can guide us in devising reversible-jump proposals that are easy to

implement and offer a good estimate of B. Details appear in Section 5.7.1. This circumvents

the potential problem of instability in a direct, sampling-based estimate of P (Y|MP,A) or

P (Y|MA), and affords an opportunity to compare the pseudo-Bayes factor to the full Bayes

factor in the comparison of two complex, hierarchical models.
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5.7.1 Reversible Jump MCMC for Model Comparison

Reversible jump MCMC (Green 1995) allows for the construction of a Markov chain that

may jump between state spaces of varying dimension. In our case we construct a chain which

takes values in two spaces indexed by m = 1 or 2. If m = 1 then the chain is currently

in the space associated with model MA, and it moves to new values within that space as

described in Section 5.3. If m = 2, then the chain is currently in the state space associated

with model MP,A, and it moves to new values within that space as described in Section 5.4.

Since MP,A includes the variables ξP and π (ξP has only one degree of freedom and, in the

case of J = 2, π has one degree of freedom as well—π1, which I will just denote by π1 in

the following) which are absent in model MA, there are two extra degrees of freedom when

m = 2. For this reason, reversible-jump moves are required to move from m = 1 to m = 2.

The formulation of these moves is such that detailed balance is satisfied, ensuring that the

proportion of time the chain spends with m = 1 converges to P (MA|Y) as the chain is run

for infinite time, and so, for a run of the chain of length n, the quantity∑n
i=1 I{mi = 1}∑n
i=1 I{mi = 2} (5.12)

estimates the posterior odds, which, upon division by the prior odds, gives B.

For a reversible jump move from m = 2 to m = 1 we leave Θ unchanged and propose

a new value for α, say α′, that is a deterministic, many-to-one, function g of the current

values of α, ξP, and π. We are at liberty to choose any appropriate and suitable g. For the

Scottish cat problem, by examining the posterior distribution of ξP, π1, and α under MP,A,

and by surmising that high values of ξP in MP,A should correspond to low values of α′ in

MA, I empirically chose

α′ = g(α, ξ, π1) = 0.0925 + 0.13638α− 0.21 sin−1(ξ2
P). (5.13)

In this case, sin−1(ξ2
P) was chosen, since that transformed variable has a more linear rela-

tionship with α than does ξP, itself, in the MCMC output from MP,A (see Figure 5.2(d)).

Notice that π1 does not actually appear in the function g, since this simplifies the Jacobian,

and it does not seem essential (i.e. there is not large correlation between α and π1). Tak-

ing the 5000 pairs (α, ξP) that were plotted in Figure 5.2(d) and applying g to them gives
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values of α′ summarized by their histogram in Figure 5.6(a). This histogram resembles the

posterior distribution of α under MA (broken line in Figure 5.4), as desired.

To propose the reverse move from m = 1 with a current value α′ to m = 2 with

proposed values for the parameters α, ξP and π1 requires simulating new values for ξP

and π1 from known densities and then using those values and the inverse of the function

g to determine what value of α shall be proposed. The known densities were chosen to

approximate the posterior density estimates of ξP and π1 under MP,A. Letting π1 denote the

proportion of purebred cats that are F. sylvestris, the densities used were fξ(ξP) ≡ Beta(8, 4)

and fπ(π1) ≡ .8Beta(30, 9) + .2Beta(15, 2). These densities are shown in Figure 5.6(b).

Comparison to Figures 5.2(a) and 5.2(b) shows that they resemble overdispersed versions of

P (ξP|Y) and P (π1|Y). With values of ξP and π1 drawn from these densities, α is determined

by

α = g−1(α′, ξP, π1) =
0.21 sin−1(ξ2

P) + α′ − .0925
.13638

.

We may propose a reversible jump move at the end of each sweep. Thus, if m = 1, after

a sweep updating all the variables associated with MA, we propose a jump up to m = 2.

If m = 2, then after a sweep updating all the variables associated with MP,A we propose

a jump down to m = 1. Under such a scheme, the acceptance probability for a proposed

move from m = 1 with α = α′ to m = 2 and parameter values (α, ξP, π1), is min{1,A},
with A reducing to

A =
P (MP,A)
P (MA)

× P (α|MP,A)
P (α′|MA)

× P (ξP|MP,A)P (π1|MP,A)
fξ(ξP)fπ(π1)

×
∏N

i=1[ξPP (Y i|π1,Θ) + ξAP (yi|α, θ)]∏N
i=1 P (Y i|α′,Θ)

× 1
0.13638

(5.14)

where P (·|M) denotes prior densities for parameters under different models M . If proposing

a move down from m = 2 with current values (α, ξP, π1) to m = 1 with α = α′, the

acceptance probability is min{1,A−1}. The factor of (0.13638)−1 is the Jacobian from the

transformation g.

Figure 5.7(a) shows a trace of logA from a chain forced to stay in m = 1 (i.e. it

makes proposals to m = 2 but is not allowed to accept them) using the Scottish cat data
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Figure 5.7: With prior odds of 1, (a) a trace of values of logA plotted as unconnected points
for 10,000 sweeps of a chain with m fixed at 1 (model MA). The majority of points lie above
5, indicating that most proposals to move to MP,A from MA by the proposed reversible-
jump move would be accepted. Note that some values of logA are greater than 20. So, even
with prior log-odds of log[P (MP,A)/P (MA)] ≈ −20, proposals from m = 1 to m = 2 will
occasionally be accepted. (b) a trace of − logA for 10,000 sweeps of a chain restricted to
m = 2. Many values are less than −20. However, again, with log[P (MP,A)/P (MA)] ≈ −20
proposals from m = 2 to m = 1 will be occasionally accepted.

with learning samples, and assuming prior odds for the models P (MP,A)/P (MA) = 1.

Figure 5.7(b) shows a similar trace of logA−1 for a chain restricted to m = 2. It is apparent

from these traces that, without imposing strong prior support for MA, it is unlikely that a

chain in m = 2 would ever move to m = 1. Thus, I made three different runs with prior

log-odds, log[P (MP,A)/P (MA)], equal to −19, −20, and −21. From each of these runs, I

estimated the posterior log adds by taking the log of (5.12). The value of the posterior log-

odds calculated as the average over ten chains started from overdispersed starting points

as a function of sweep number is shown for the three different prior odds in Figure 5.8.

Though the chains may not have been run long enough for an extremely precise estimate

of the posterior log-odds, an order-of-magnitude estimate can clearly be made. Subtracting

the prior log-odds from the estimated posterior log-odds gives, for each of the three different
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Figure 5.8: Estimated posterior log-odds, log[P (MP,A|Y)/P (MA|Y)] for three different
prior log-odds. Each line shows the estimate as a function of number of sweeps. Ten separate
chains started from overdispersed points were used for each estimate. The estimates shown
are the log of the expression in (5.12) for n = 10 times the number of sweeps. The numbers
at the right of each line are the prior log-odds assumed. MP,A is so highly favored, that in
order for the reversible-jump sampler to mix, huge prior weight must be given to MA. The
log of the Bayes factor, log B, may be calculated by subtracting the prior log-odds from the
estimated posterior log-odds. For all three values of the prior odds this gives about 20.3.

prior odds used, an estimate of ≈ 20.3 for the log of the Bayes factor. Hence, 2 log B > 40,

indicating overwhelming support in the data for model MP,A over MA. The log of the

pseudo-Bayes factor is 12.3 which, quite notably, differs by eight from the true log B.

5.8 Discussion

In applications to conservation biology and ecology, populations of interest may be pure

mixtures of two subpopulations, or they may contain admixed individuals from two orig-

inally separate subpopulations. Genetic data, in conjunction with statistical models of
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genetic mixture and admixture have been useful for clustering individuals and genes from

different subpopulations. This chapter presents a novel application of the “filter-forward-

simulate-backward” algorithm akin to the computations presented in Baum et al. (1970)

to the population-admixture model of Pritchard et al. (2000). This computation makes

it possible to expand that model to one that allows for individuals to be either purebred

or admixed. Such an expanded model (MP,A) is vastly more supported by the Scottish cat

data than one including admixture only. It is likely that MP,A will fit other datasets much

better as well, because samples from recently admixed populations will typically include

some purebred individuals.

While the dramatic improvement of model fit is encouraging, it also raises some issues

that bear further investigation. The first of these is that MP,A may fit the data better

not simply because it allows separate classes of purebred and admixed individuals. It

may be that a great deal of improvement comes from including the parameter π which

allows different contributions of pure cats from the two subpopulations. This contrasts

to the formulation in MA where, due to the symmetry of the Beta(α, α) prior for the

qi’s, the marginal probabilities are equal that any gene copy is from the housecat or the

F. sylvestris subpopulation. That is to say, under MA, P (Wi,t = 1|α) = P (Wi,t = 2|α) =

.5 for all i, t, and α. By contrast, under MP,A, for different values of ξ, π, and α, the

marginal probability that any gene copy is from the housecat population is not constrained

to equal the marginal probability that it is from the F. sylvestris population. The symmetry

imposed by MA might explain some systematic biases for estimates of qi that Pritchard,

Stephens, Rosenberg and Donnelly (2000) report for simulated data with unequal

admixture proportions. Furthermore, the issue may have implications for model MP,A. If

the population admixture proportions depart from .5, then P (Y i|α,Θ) might be inflated

for individuals with large amounts of ancestry from the lesser-represented subpopulation,

and deflated for individuals with more ancestry from the greater-represented subpopulation.

For this reason, in the Scottish cat problem, one might expect that the posterior probability

of being a purebred individual will be overestimated for cats that resemble F. sylvestris and

underestimated for cats that appear to be housecats. This may also induce some bias in

the posterior estimate of ξP. All this suggests that a fruitful extension to the model MA
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of Pritchard et al. (2000) would be to allow population-specific α’s. For example, in the

case of J subpopulations, qi ∼ Dir(α1, . . . , αJ).

The results also suggest that estimation in MP,A may be sensitive to the upper bound, A,

chosen for α. Had A been chosen greater than three, then values of α > 3 would surely have

been visited in the MCMC simulation, and the resulting estimate for ξP would have been

somewhat larger, since α and ξP are positively correlated. This is observed in a separate run

made with A = 10—the chain visits values of α between 3 and 10 quite frequently. In fact,

the estimated posterior density for α decreases only slightly between 3 and 10. However,

the effect on the other parameters is not overwhelming. For example, with A = 10, the

posterior mean (90% credible interval) for ξP was .71 (.53, .82), as opposed to .65 (.47, .79)

with A = 3. It is interesting that the choice of A has little effect in the poorer-fitting model

MA, because that model tries to fit purebred cats as admixed individuals. This keeps α

low regardless of A. Under MP,A, however, once the purebred individuals are removed from

the admixed class there is little information left for estimating α. So, paradoxically, to use

the better-fitting model MP,A requires imposing more prior information. In the case of A,

however, biological knowledge can guide the choice.

I chose A = 3 because, with only two subpopulations, large values of α indicate that ad-

mixed individuals carry close to half of their ancestry from one subpopulation and half from

the other. In a population like this, the most plausible explanation for such a pattern would

be that the admixed individuals were all first-generation (F1) hybrids between individuals

from the two subpopulations. If this is the case, then, at each locus, an admixed individual

will carry exactly one allele from one subpopulation, with the other allele coming from the

other subpopulation. This condition can be used to compute the posterior probability that

an individual in the sample is an F1 hybrid. The details of this are covered in the following

chapter. I have found that none of the individuals in the sample had posterior probability

greater than .5 of being an F1 hybrid. In fact, for all but seven of the individuals, the poste-

rior probability of being an F1 hybrid was below .10. For this reason, it seemed implausible

that α should be allowed to range past about three.

The Bayesian model comparison revealed that MP,A is a much better model for the

Scottish cat data. Computing Bayes factors in these models is often difficult because calcu-
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lating the marginal likelihood can require a difficult computation of an unkown normalizing

constant. Rather than directly computing the marginal likelihood, Section 5.7.1 gives an

example of how approximations to posterior densities of several parameters in different

models may be used to formulate reversible-jump moves between a small set of closely-

related models. This gives us a good approximation to the Bayes factor. In turn, that

allows us to compare the true Bayes factor to the pseudo-Bayes factor (a product of ratios

of cross-validation predictive densities). The pseudo-Bayes factor has been advocated as a

computationally manageable approximation to the Bayes factor. While cross-validation and

predictive densities offer a fine level of detail for exploring which observations, in particular,

are poorly fit by a model, comparisons between models via the pseudo-Bayes factor should

be made with reservation. In the current problem, the pseudo-Bayes factor provided a poor

approximation of the Bayes factor.

Quite apart from genetic mixtures, the forward-backward computation here may be

useful in more general mixture problems. Sometimes, the Gibbs sampler mixes poorly

in the Bayesian analysis of mixtures. Robert (1996) describes this in terms of trapping

states in finite normal mixtures: when only one or a few observations are allocated to a

component, the parameters for that component fit the few observations so tightly that few if

any of the other observations would likely get allocated to the component. Reparametrizing

the normal mixture model, as done by Mengerson and Robert (1995), corrects the

problem by keeping the component-specific parameters from fitting the observations in a

near-empty component too tightly. However, this does not address trapping states that

may occur simply because the mixing proportion for a component becomes small. If the

mixing proportion of a component happens to reach a value near zero, then the probability

of allocating any observations to that component will also be small, and the component

may remain empty through many iterations of the chain.

The block-updating scheme of Section 5.3.1 can provide a useful Gibbs move that could

be executed to restore empty components, by the following rationale: in a J-component

finite mixture with a Dir(ζ1, . . . , ζJ) prior on the mixing proportions, the latent allocation

variables, Zi, marginally follow a labelled compound multinomial-Dirichlet distribution.

Consequently, conditional on current values of all the Zi’s, the subset of those having any
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two values will follow a labelled beta-binomial distribution (Johnson et al. 1997). That

is, the marginal distribution of {Zi : Zi = ja or Zi = jb, ja 6= jb, i = 1, . . . , N} follow

a labelled beta-binomial distribution with parameters (ζja , ζjb). Thus, the methods of Sec-

tion 5.3.1 could be applied to redistribute elements amongst the two components ja and jb,

having marginalized over the mixing proportions πja and πjb . And so, observations may be

reallocated to component ja (or jb), according to their full conditional distributions, even if

πja (or πjb) is close to zero.
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Chapter 6

EXPLICIT MODELING OF THE HYBRIDIZATION PROCESS

The previous chapter described an extension to the model proposed by Pritchard

et al. (2000) for individuals from structured populations. The Pritchard et al. model

is a mathematically convenient model which seems to apply well to many situations of

population structure. However, when more information is available about the nature of the

admixing process, then a more detailed analysis of the situation is possible by using a more

detailed model of the process. This chapter describes such a detailed model for a commonly

encountered sitatuation in conservation biology—the case of two species which are known

to have been hybridizing for a limited number of generations or in which the hybrids have

fitness which is reduced to the extent that all of the admixed individuals in regions of overlap

between the species are the result of recent hybridization. The model applied is one in which

individuals belong to one of many different hybrid categories (e.g., F1, F2, and various

backcrosses), and inference will be done in a similar way to that in the previous chapter.

Using Markov chain Monte Carlo (MCMC) we compute for each individual the posterior

probability of inclusion in a particular hybrid category, and simultaneously compute the

posterior distribution of the allele frequencies in the populations under study of the two

different species.

I present these methods in the context of hybridization between sympatric populations

of a species A and a species B, and develop the probability model that arises from explicitly

modeling the hybridization process and using data on multiple, unlinked markers. This

probability is the product of probabilities for single-locus genotypes conditional on the

hybrid category. There is a simple calculus for these conditional probabilities which is

described below. With the model thus specified, I describe how MCMC proceeds in similar

fashion to the previous chapter.

The main goals of this chapter are to derive the method, apply it to real and simu-
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lated data, and then describe several modifications and extensions suggested by the results

of these data analyses. I apply the method to real genetic data (a sample of juvenile

salmonids containing rainbow trout (Oncorhynchus mykss), cutthroat trout (O. clarki), and

their hybrids) and then to simulated data with many relatively uninformative markers and

again with fewer very informative markers. The results of these analyses, in Section 6.5,

suggest that distinguishing between different hybrid categories beyond the F1 stage requires

a substantial amount of data, and clear genetic differentiation between the species. They

also underscore the importance of having an established sampling scheme when trying to

detect hybrids. These issues suggest further extensions to the method which are beyond the

current scope of the thesis.

6.1 Population and Probability Model

We consider a group of individuals in the wild which consists of sympatric populations of

two species A and B, and hybrids of the two species which have occurred from n potential

generations of interbreeding. We take n to be known or assumed. We also assume that

we have a sample of M individuals drawn from this group for genetic analysis. For now,

we shall assume that individuals are sampled randomly and independently of whether they

are of species A, or species B, or are a hybrid of the two species. This sort of sampling

would arise, if, for example, juveniles were sampled and were very difficult to distinguish

on the basis of morphology between the two species or hybrids thereof. In Section 6.6,

I briefly discuss a modeling/sampling approach for relaxing that assumption. We have

genotype information from L unlinked loci on the individuals sampled. Let the `th locus

possess K` alleles detected in the sample. We denote the allele frequencies in species A

and B, n generations ago, by ΘA and ΘB, respectively. Each of these Θ’s is a collection of

vectors, with each vector giving the allele frequencies at a particular locus. For example, for

species A, ΘA = (θA,1, . . . ,θA,L), where θA,` = (θA,`,1, . . . , θA,`,K`
) are allele frequencies at

the `th locus. The alleles found in individuals from species A and species B are assumed to

be drawn randomly from the allele frequencies ΘA and ΘB respectively, n generations ago.

Likewise, individuals n generations before sampling are assumed to be in Hardy-Weinberg
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and linkage equilibrium with reference to their contemporaneous conspecifics.

Each individual in the sample is genotyped at L loci. The gene copies carried at any

locus are considered to be ordered, though that order may be arbitrary; for example it may

merely be the order in which the genetic data on that locus in that individual happened to

be recorded. This ordering arises because we will shortly introduce latent data that applies

to each particular gene copy. The allelic types of the two gene copies at locus ` in individual

i are denoted by Y i,` = (Yi,`,1, Yi,`,2), with each of Yi,`,1 and Yi,`,2 taking an integer value

between 1 and K`, inclusive, corresponding to the possible allelic types at the `th locus.

The L single-locus genotypes in the ith individual are denoted by Yi = (Y i,1, . . . ,Y i,L),

and all of the genetic data, over all M individuals in the sample is Y = (Y1, . . . ,YM ).

We do not know from which species each of an individual’s gene copies descended, but we

denote that unknown information by the latent variable W i,` = (Wi,`,1, Wi,`,2). Wi,`,1 takes

the value 0 if the first gene copy at the `th locus of the ith individual originated from the

species A population, and it takes the value 1 if that gene copy originated from species B.

Wi,`,2 takes values analogously, depending on the origin of the second gene copy. We use

Wi = (W i,1, . . . ,W i,L) to denote all the latent gene origin indicators in the ith individual,

and W denotes the latent gene origin indicators in all the individuals.

To develop the probability for the observed data, Y, we must explicitly state what

is meant by a “hybrid category.” For unlinked markers such a definition is given in the

following subsection in terms of “genotype frequency classes.”

6.1.1 Hybrid categories

When hybridization between two species has been potentially occurring for n generations,

the possible hybrid categories into which an individual may fall can be enumerated and

described by considering the possible arrangements of different species amongst the founders

in an n-generational pedigree. The individual of interest is taken to be the member at the

bottom of the pedigree, and is assumed to be non-inbred over the last n generations; hence

we assume there are no loops in its n-generational pedigree. Figure 6.1 illustrates this for

the case of n = 2. Depending on the type of genetic data available (e.g., linked versus
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(a) (b) (c)

(d) (e) (f)

Figure 6.1: Six arrangements of founders on pedigrees of n = 2 two generations each. Each
box represents a locus. The circles within each box represent the two gene copies possessed
by the diploid organism at the locus. The founders are the individuals in the top row of
each pedigree. Black gene copies amongst founders are those originating from the Species A
population, and the white gene copies are from Species B. The individual at the bottom
of each pedigree belongs to a different hybrid category, determined by the arrangement of
species amongst the founders. (a) through (f) represent six distinct hybrid classes. (a)
through (f) also represent six distinct genotype frequency classes. There are, however, only
five distinct gene frequency classes; the individuals at the bottoms of pedigrees (c) and (f)
are both in the same gene frequency class.
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unlinked loci), it may not be possible to resolve all the possible arrangements of founders on

the pedigree. I describe three ways of classifying these different arrangements (and hence

the individuals at the bottom of the pedigree) the last two of which correspond to the level

of resolution that is available in unlinked versus linked marker data.

At the simplest level, we can classify individuals into different gene frequency classes

which correspond to the expected proportion of gene copies originating from one species or

another within that individual. This is determined by the number of founders from each

species on the pedigree. Since there are 2n founders for a pedigree with n generations, there

are 2n + 1 different gene frequency classes. Each class is determined by the number, a, of

founders originating from the species A population (a = 0, 1, . . . , 2n). In Figure 6.1, both

(c) and (f) belong to the gene frequency class with a = 2. The individuals at the bottoms

of the other pedigrees belong to the remaining four distinct gene frequency classes.

Thinking in terms of gene frequency classes provides some perspective on the latent

variable Qi described in the previous chapter. Pritchard et al. (2000) introduced Qi as

the proportion of genome of the ith individual originating from Population 0. Qi reflects

membership of the ith individual in a gene frequency class as n→∞. As n→∞ the number

of possible gene frequency classes becomes infinite—hence the continuous nature of Qi in

the previous chapter. In the present chapter, we will use Q to denote the proportion of an

individual’s genome derived from the Species A population; however, here, Q will be discrete

in nature, rather than continuous. We refer to Q as the “genetic heritage proportion.”

In recently hybridized populations, there is more information available than that used

by considering only gene frequency classes. We may instead consider the different genotype

frequency classes into which an individual may fall. The members of a genotype frequency

class all share the same expected proportion of the three possible single-locus genotypes

with respect to origin of the gene copies. These three genotypes are: 1) both gene copies

originating from the Species A population; 2) one gene copy from Species A, the other from

Species B; and 3) both gene copies from Species B . Enumerating these genotype frequency

classes, and computing the expected proportions of the genotypes follows from Mendel’s

laws. Since each individual receives one gene copy randomly selected from the two in its

mother, and another randomly selected from the two in its father, the expected proportions
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of the genotypes in an individual are determined by the gene frequency classes to which its

parents belong. We let Gg = (Gg,1, Gg,2, Gg,3) denote the expected proportions of the three

different genotypes in an individual in genotype frequency class g; these proportions are

Gg,1 = QmQf (6.1)

Gg,2 = 2Qm(1−Qf )

Gg,3 = (1−Qm)(1−Qf )

where Qm and Qf are the genetic heritage proportions of the individual’s mother and

father, respectively. Straightforward algebra verifies that two individuals i and j will belong

to the same genotype frequency class if and only if the parents of j belong to the same

gene frequency classes as the parents of i. Consequently, the number of distinct genotype

frequency classes after n generations of possible interbreeding between the species is the

number of unordered pairs of different gene frequency classes after n−1 generations: (2n−1+

1)(2n−1 + 2)/2. For n ≥ 2 there are always more genotype frequency classes than there are

gene frequency classes. With data on multiple unlinked loci, it is possible to distinguish

between individuals in different genotype frequency classes. This is one of our inference

goals, and in the Bayesian context will be pursued by computing the posterior distribution

of a latent variable Zi which takes the value g if the ith individual belongs to genotype

frequency class g.

Another classification of hybrids may be made into what I refer to as different hybrid

classes. Members of the same hybrid class share the same number of founders from each

species and the same arrangement of those founders, up to changes of branching order at

any node on the binary tree of the pedigree. For n > 2 there are always more hybrid

classes than there are genotype frequency classes. As an example, with n = 3, F2 and F3

hybrids are in different hybrid classes as shown by the different arrangements on the three

generational pedigrees of Figure 6.2. Nonetheless, they are in the same genotype frequency

class. With only unlinked markers, it is not possible to distinguish individuals that are in

different hybrid classes, but in the same genotype frequency class. For the formulation with

unlinked markers we will deal exclusively with the genotype frequency classes. A probability
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model with more complex dependence structure would be required for dealing with linked

markers.

6.1.2 Probability of the data

Similar to the previous chapter we introduce notation here to avoid awkward subscripting:

let θA〈i; `; 1〉 denote the frequency in the species A population of the allele possessed by

the ith individual at the first gene copy of its `th locus. This is a shorthand for the doubly-

subscripted θA,`,Yi,`,1 . Similarly, for the second gene copy we will write θA〈i; `; 2〉 and for

the frequencies in the population from species B we have θB〈i; `; 1〉 and θB〈i; `; 2〉.

Given the population allele frequencies, the gene origin indicators, and the genotype

frequency class to which an individual belongs, it is straightforward to compute the proba-

bility of that individual’s single-locus genotype at the `th locus. For our purposes later, it

is more useful to have an expression for the joint probability of the genotype and the gene

origin indicators. In the ith individual in the gth genotype frequency class, this is

P (Y i,`,W i,`|Zi = g,θA,`,θB,`) =



θA〈i; `; 1〉θA〈i; `; 2〉Gg,1, if Wi,`,1 = Wi,`,2 = 0

θA〈i; `; 1〉θB〈i; `; 2〉Gg,2/2, if Wi,`,1 = 0, Wi,`,2 = 1

θB〈i; `; 1〉θA〈i; `; 2〉Gg,2/2, if Wi,`,1 = 1, Wi,`,2 = 0

θB〈i; `; 1〉θB〈i; `; 2〉Gg,3, if Wi,`,1 = Wi,`,2 = 1.
(6.2)

The product of the two allele frequencies in the above expressions follows from the as-

sumption that each gene copy in the founders (n generations ago) of the ith individual is

sampled randomly from the alleles present in its population of origin. Then, Gg,1 is the

probability that an individual in genotype frequency class g has both gene copies originat-

ing from species A, Gg,2/2 is the probability that the first (second) gene copy originates

from species A and the second (first) originates from species B, and Gg,3 is the probability

that both gene copies originated from speces B.

For a given genotype frequency class, the marginal probability of the ith individual’s
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genotype at locus ` is computed by summing (6.2) over the latent gene origin indicators:

P (Y i,`|Zi = g,θA,`,θB,`) =
∑

0≤Wi,`,1≤1
0≤Wi,`,2≤1

P (Y i,`,W i,`|Zi = g,θA,`,θB,`). (6.3)

And finally, under the assumption of unlinked markers in Hardy-Weinberg and linkage

equilibrium among conspecifics n generations ago, the probability of the ith individual’s

multilocus genotype is just the product over the L single-locus genotype probabilities:

P (Yi|Zi = g,ΘA,ΘB) =
L∏

`=1

P (Y i,`|Zi = g,θA,`,θB,`). (6.4)

This gives us an expression for the probability of the data on a single individual. We now

must derive the probability for the data on all M individuals in the sample.

Given n generations of potential interbreeding between the species, there are Gn =

(2n−1 +1)(2n−1 +2)/2 genotype frequency classes that members of our genetic sample may

fall into. We model the individuals in the sample as being randomly and independently

drawn from a mixture of individuals, each belonging to one of the Gn genotype frequency

classes with probability πg, g = 1, . . . ,Gn,
∑Gn

g=1 πg = 1. Using π to denote the vector

of mixing proportions, (π1, . . . , πGn), we may now write the probability of all the observed

data, Y, conditional on n, ΘA, ΘB and π as the product over the members of the sample

of the probability of each of their multilocus genotypes:

P (Y|ΘA,ΘB,π) =
M∏
i=1

( Gn∑
g=1

πgP (Yi|Zi = g,ΘA,ΘB)
)

. (6.5)

6.2 A Bayesian Specification

Equation 6.5 is the likelihood for ΘA, ΘB, and π. To pursue Bayesian inference in this prob-

lem requires prior distributions P (ΘA), P (ΘB), and P (π), so that the posterior distribution

may be computed. We wish to make inferences not only about ΘA, ΘB, and π, but also the

latent variables W and Z = (Z1, . . . , ZM ), so we are concerned with the posterior distribu-

tion P (ΘA,ΘB,π,Z,W|Y) and the marginalizations thereof. That posterior distribution

is proportional to the joint probability of all those variables, P (Y,ΘA,ΘB,π,Z,W). With
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the latent variables present, this joint density factorizes neatly:

P (Y,ΘA,ΘB,π,Z,W) = P (ΘA)P (ΘB)P (π) (6.6)

×
M∏
i=1

P (Yi|Wi,ΘA,ΘB)P (W i|Zi)P (Zi|π),

which, as we will see in Section 6.3, allows straightforward MCMC sampling.

It is computationally convenient and biologically reasonable to take the specific form of

the prior distributions ΘA and ΘB to be Dirichlet distributions, independent over the L

unlinked loci. That is, P (θA,`) is Dirichlet(λA,`,1, . . . , λA,`,K`
). Since the Dirichlet distribu-

tion is the conjugate prior for the multinomial distribution, this choice facilitates simulation

from the full conditional distributions for ΘA and ΘB. The Dirichlet distribution is also the

multivariate generalization of the beta distribution which arises theoretically as the equi-

librium distribution for gene frequencies in the presence of genetic drift and linear pressure

from migration or mutation (Wright 1938; Wright 1952). Specification of the parameters

λA,` = (λA,`,1, . . . , λA,`,K`
) and λB,` = (λB,`,1, . . . , λB,`,K`

) provides a way to incorporate

prior information about the allele frequencies among the two species at the `th locus. For

example, if at locus `, previous studies have indicated that species B has a very low fre-

quency of allele j while species A has a high frequency, then λB,`,j should be chosen small,

relative to the other components of λB,`, while λA,`,j should be chosen large. If one had

very strong prior evidence that different species were fixed for different alleles, then this

could also be incorporated in the prior in a similar manner. If, on the other hand, very

little prior knowledge is available about allele frequencies in the two species, then a sensible

choice of prior may be the Jeffreys prior (see Gelman et al. (1996)). For species A this

would be λA,`,j = 1/K` for j = 1, . . . , K`. Another “not-so-informative” prior density is the

uniform Dirichlet distribution with λA,`,j = 1, j = 1, . . . , K`. This prior de-emphasizes the

importance given to those alleles that only appear in several copies in the whole sample.

The conjugate prior for π is also a Dirichlet distribution, so we shall let P (π) ≡
Dirichlet(ζ1, . . . , ζGn). Here too, prior knowledge of the biology of the situation could be

incorporated into the prior. For example, if it was well known that backcrosses between

F1 hybrids and species A had low fitness, then that could be reflected in the prior for π.
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Additionally if hybridization and backcrossing was known to be fairly rare, then this prior

knowledge could be reflected by having smaller ζg’s for those genotype frequency classes

that required more episodes of interbreeding within the last n generations. In the absence

of prior information on hybridization rates, the Jeffreys prior, ζg = 1/Gn, g = 1, . . . ,Gn, is

once again a suitable choice.

6.3 MCMC Simulation from the Posterior Distribution

It is not possible to compute directly the posterior distributions for the variables that we are

interested in. However, simulating from the joint posterior distribution of all the variables

by MCMC can be done via Gibbs sampling in a manner similar to that for normal finite

mixture models (Diebolt and Robert 1994). After a sufficient period of burn-in, a sample

of variables drawn from this joint posterior distribution allows Monte Carlo estimation of the

posterior distribution of any subset of variables of interest, either marginally, or conditional

on the values taken by another subset of variables. Given initial starting values for all

the variables in the model, Gibbs sampling proceeds by successively simulating new values

for particular variables in the model from their full conditional distributions (Geman and

Geman 1984). I shall denote full conditional distributions by P (·| · · ·).
We shall refer to a standard iteration of our MCMC algorithm as a “sweep.” A sweep

consists of a series of steps in which each of the variables in the probability model (except

for the data, Y, which are fixed) is updated once. Here, the steps in a single sweep are

1. For ` = 1, . . . , L, simulate new values for ΘA,` and ΘB,` from their full conditional

distributions, P (ΘA| · · ·) and P (ΘB| · · ·), respectively,

2. Simulate a new value of π from P (π| · · ·),

3. For i = 1, . . . , M and ` = 1, . . . , L, simulate a new value of W i,` from P (W i,`| · · ·),

4. For i = 1, . . . , M , simulate a new value of Zi from P (Zi|Yi,ΘA,ΘB).

By sampling the current states of all the variables after each sweep, one aquires a de-

pendent sample suitable for Monte Carlo estimation of most quantities of interest. In
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particular, a Rao-Blackwellized Monte Carlo estimate of the posterior probability that in-

dividual i is of the gth genotype frequency class is obtained by averaging the values of

P (Zi = g|Yi,ΘA,ΘB) computed during each sweep.

The full conditional distributions are easily derived. By conjugacy,

P (θA,`| · · ·) ≡ Dirichlet(λA,`,1 + rA,`,1, . . . , λA,`,K`
+ rA,`,K`

) (6.7)

where rA,`,j is the number of gene copies of allelic type j at the `th locus currently allocated

to species A. (i.e., gene copies of allelic type j for which the corresponding W·,`,· = 0). An

analogous expression exists for P (θB,`| · · ·). Again by conjugacy

P (π| · · ·) ≡ Dirichlet(ζ1 + s1, . . . , ζGn + sGn) (6.8)

where sg is the number of individuals in the sample currently allocated to genotype frequency

class g.

The full conditional distribution for the pair of gene origin indicators W i,` in the ith fish

currently included in the gth genotype frequency class is obtained by Bayes Law:

P (W i,`| · · ·) =
P (Y i,`,W i,`|Zi = g,θA,`,θB,`)

P (Y i,`|Zi = g,θA,`,θB,`)
(6.9)

where the numerator and denominator are given in (6.2) and (6.3), respectively. The full

conditional distribution for Zi would be P (Zi|W i,`,θA,`,θB,`), however, it is more efficient

to simulate new values of Zi from P (Zi|Yi,ΘA,ΘB), since this represents a marginalization

over the four possible values of W i,`. P (Zi|Yi,ΘA,ΘB) is easy to compute, because the

quantities needed to calculate it by Bayes Law have already been computed in Step 3 of the

sweep. By Bayes Law

P (Zi = j|Yi,ΘA,ΘB) =
πgP (Y i,`|Zi = j,θA,`,θB,`)∑Gn

g=1 πgP (Y i,`|Zi = g,θA,`,θB,`)
. (6.10)

It is a good idea to run multiple chains from different starting values to diagnose mixing

problems. In this case, it is easy to assign overdispersed starting values by simulating

values of ΘA, ΘB, and π from their prior distributions rather than their full conditional

distributions in Steps 1 and 2 of the first sweep. I have used Gelman (1996)’s estimated

scale reduction potential factor to assess how quickly chains in this problem converge to the
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target distribution. In the case of data from cutthroat trout and steelhead trout described

in the following section this occurs very rapidly. Burn in then requires little time.

6.4 Steelhead × Cutthroat Trout Hybrids in Whiskey Creek

Hybrids of steelhead trout, O. mykiss, and coastal cutthroat trout, O. clarki. in vari-

ous streams on the West Coast have been detected using genetic data in several studies

(Campton and Utter 1985; Neillands 1990). In a large genetic survey conducted by

the National Marine Fisheries Service and the Washington Department of Fish and Wildlife

(as part of the preparation of a status report to determine extinction risk for coastal cut-

throat trout) widespread evidence for hybridization between the two species was found.

Johnson et al. (1999) summarize this survey, as well as the available literature from the

field and the laboratory on hybridization between O. clarki and O. mykiss. They report

that no severe developmental abnormalities occur in hybrids of the two species; hybrid off-

spring are clearly viable. However, hybrids may possess morphological and behavioral traits

that reduce their fitness in natural environments. This accords well with the observation

that hybrid individuals are typically detected among juvenile trout, but adult hybrids are

seldom observed, and with the observation that although hybrization may occur each year

(in cases where it has been monitored over time it has been found to be ongoing) the two

species still remain distinct. Nonetheless, at some locales, some fish sampled and analyzed

possess genotypes suggesting they belong to a hybrid class involving more than just one

generation of hybridization. Here, I apply the methods of this chapter to the survey data

from Whiskey Creek in Western Washington to see if it is possible to distinguish between

F1 and later hybrids.

As described in Johnson et al. (1999), 74 juvenile trout, believed to be cutthroat, were

sampled from Whiskey Creek. The sample was not a random sample of the juvenile fish

inhabiting Whiskey Creek because the biologists were expressly trying to sample cutthroat

trout only. It is quite evident, however, that they were unsuccessful at capturing a sample

only of cutthroat trout. In the following, the sample is treated as if it were a random

sample, and, given the difficulty of distinguishing the two species as juveniles, this may
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not be very inaccurate. It should be kept in mind, however, that careful estimates of the

frequency of hybrid individuals would require data from a carefully planned study conducted

for the purpose of identifying hybrids (rather than, as with the Whiskey Creek data, a study

intended to estimate the allele frequencies in cutthroat trout alone). I briefly discuss the

statistical modeling of different sampling scenarios in the discussion.

The 74 fish were genotyped at 50 enzyme loci. The occurrence at some loci of several

allelic types typically found only at low frequency in cutthroat populations but at high

frequency in steelhead populations led Johnson et al. (1999) to separate the 74 fish into

a group of 48 putative cutthroat, 21 putative steelhead, and 5 putative hybrids. These

classifications were based on two rules: 1) fish homozygous for the steelhead common allele

at ADA-2∗, mAH-2∗, and CKA-2∗ were classified as steelhead; and 2) fish possessing a

steelhead common allele in four or more of the eight loci, sAAT-4∗, ADA-2∗, mAH-2∗,

mAH-3∗, CKA-2∗, IDDH-1∗, sIDHP-2∗ and PEPA∗, were classified as hybrids. David Teel

of the National Marine Fisheries Service kindly provided me with the data on those 74

fish, typed at 50 loci from Whiskey Creek. Somehow, this dataset did not include the four

supposedly informative loci mAH-2∗, CKA-2∗, sAAT-4∗, or PEPA∗. Even without those

loci, however, the dataset is still suitable for demonstrating some important points about

the methods developed within this chapter. In the remainder of this section I describe four

different analyses, two with real data and two with simulated data, that I carried out. The

results of these analyses appear in Section 6.5.

6.4.1 Four analyses for demonstration

I performed four analyses:

1. I first analyzed the data from Whiskey Creek using the same method as that used for

the Scottish cat data in Chapter 5. The probability model underlying this analysis

allows fish to belong either to a pure cutthroat or pure steelhead category, or to

a generic “admixed” category. The analysis also provides a posterior distribution

for the putatively admixed individuals’ genetic heritage proportions. Of the 50 loci

available, 30 were polymorphic in the sample from Whiskey Creek and were used for
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Table 6.1: Genotype frequency classes assumed for the analyses. 1–5 and 7 are the six
genotype frequency classes that arise given n = 2 generations of potential interbreeding.
Gg,1, Gg,2, and Gg,3 are as described in the text. The final column gives names that I use
to refer to these genotype frequency classes. Classes 6 and 8 require n = 3 generations of
potentical interbreeding, as they would be formed by Cutt Bx × Cutt Bx and St Bx × St
Bx pairings, respectively.

g Q Gg,1 (A,A) Gg,2 (A,B) or (B,A) Gg,2 (B,B) Name

1 1.00 1.0000 0.0000 0.0000 Pure Cutt

2 0.00 0.0000 0.0000 1.0000 Pure St

3 0.50 0.0000 1.0000 0.0000 F1

4 0.50 0.2500 0.5000 0.2500 F2

5 0.75 0.5000 0.5000 0.0000 Cutt Bx

6 0.75 0.5625 0.3750 0.0625 Cutt (Bx)2

7 0.25 0.0000 0.5000 0.5000 St Bx

8 0.25 0.0625 0.3750 0.5625 St (Bx)2

the analysis. For the MCMC I used 5 different chains, each with 2000 sweeps for burn

in and then 40,000 sweeps during which samples were collected every sweep from each

chain. This required 12 hours on a laptop computer with a 266 MHz G3 (Macintosh)

processor.

2. I then re-analyzed the data from Whiskey Creek using the methods developed in the

present chapter. For this analysis, I assumed there were 8 genotype frequency classes

to which individuals might belong—the six classes arising from n = 2 generations of

potential interbreeding, as well as two more corresponding to offspring generated by

breeding between two backcrossed individuals. Table 6.1 lists the expected proportions

of the different single locus genotypes in these eight classes, and also gives the names

that I use to refer to them. I use these names only as representative “type” names—for

example, it should be kept in mind that the “F2” genotype frequency class contains

other indistinguishable hybrid classes as well, such as F3. Though prior information
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is available on allele frequencies in other steelhead and cutthroat populations, I chose

to do this analysis using the Jeffreys prior (λ`,j = 1/K`, j = 1, . . . , K`) for allele

frequencies. I also used the Jeffreys prior (ζg = 1/8, g = 1, . . . , 8) for the mixing

proportions (π) of the different genotype frequency classes. 100,000 sweeps of five

chains started from overdispersed starting values were run. This required 5 hours on

the same laptop computer with the 266 Mhz G3 (Macintosh) processor.

3. From the posterior mean estimates in Analysis 2 of the allele frequencies in the cut-

throat and the steelhead populations of Whiskey Creek, I simulated a new sample

of 391 fish. The purpose of this was to see whether inferences about genotype fre-

quency classes could be made any more sharply with many more individuals in the

sample, but still with loci that were roughly as informative as those in the Whiskey

Creek dataset. It is also, of course, instructive to analyze simulated data in which the

“truth” is known. In this case I included in the sample 200 Pure Cutt, 150 Pure St,

20 F1, 10 F2, 5 St Bx, and 2 each of Cutt Bx, Cutt (Bx)2, and St (Bx)2 individuals.

I once again used a Jeffreys prior for allele frequency, but used the uniform Dirichlet

prior (ζg = 1, g = 1, . . . , 8) for the mixing proportions π. 35,000 sweeps of five chains

with different starting values required 8 hours.

4. The last dataset analyzed is another simulated dataset with 391 individuals and the

same numbers of individuals from each of the 8 genotype frequency classes as in

Analysis 3. However, genetic data were simulated for 12 diallelic loci with very large

frequency differences between the two species—at each locus, species A has an allele

at frequency .995, which is at frequency .005 in species B. This was designed to mimic

the situation in which a researcher has a moderate number of nearly diagnostic loci.

The analysis was once again carried out using the Jeffreys prior for allele frequencies

and a uniform Dirichlet prior on the mixing proportions. 45,000 sweeps of five chains,

each with overdispersed starting values, required 5.1 hours.
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6.5 Results

Analysis 1

The results of the simultaneous mixture/admixture analysis of Chapter 5 on the Whiskey

Creek dataset motivated, to some extent, the development of the techniques in this chapter.

Figure 6.3(a) shows the posterior probability that each of the 74 fish in the sample is Pure

Cutt or Pure St. Seven of those fish have posterior probabilities of being purebred less than

.55. In Figure 6.3 are posterior distributions of the genetic heritage proportions Qi of these

seven fish, suggesting that perhaps they belong to different hybrid classes. Fish 48, 19,

and 16, have posterior means for Qi that are near .5. This would be the genetic heritage

proportion of either an F1 or F2 hybrid; the analysis of Chapter 5 is not able to distinguish

those two different hybrid classes. Fish 49, has a Qi near .25, which would correspond to the

St Bx or St (Bx)2 categories. Fish 21 and 52, on the other hand, appear to have roughly

3/4 of their ancestry from the cutthroat species suggesting that they may belong to the

Cutt Bx or Cutt (Bx)2 categories. Once again, it is not possible to distinguish between

those possibilities without explicitly modeling the hybridization process as done in the next

analysis.

Analysis 2

In this analysis, each fish is assigned a posterior probability of belonging to each one of the

8 different genotype frequency classes. Two of those classes are purebred categories (Pure

Cutt and Pure St). All the individuals with a posterior probability of being Pure Cutt

greater than .5 have a negligible posterior probability of being Pure St, and vice versa. For

these individuals, Figure 6.4(a) shows their posterior probabilities of being Pure Cutts (open

circles) or Pure St (closed cirles), respectively. Only three fish have posterior probability of

being purebred less than .55. These three are 48, 19, and 16. Fish 72, 49, 21 , and 52 are no

longer among them—they all have posterior probabilities greater than .7 of being purebred.

Figure 6.4 shows the posterior probabilities that fish 48, 19, and 16 belong to each of

the eight different genotype frequency classes. Fish 19 has posterior probability of being

an F1 hybrid that is more than three times that of being in the F2 category. Nonetheless,
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the posterior probability that it belongs to a genotype frequency class other than F1 is .36;

there is not sufficient evidence to assign it to a single genotype frequency class with any

sort of confidence. This is even more true for fish 48 and 16.

Analysis 3

The posterior probability that each of the 200 simulated cutthroat trout belong to the Pure

Cutt class is shown in Figure 6.5(a). Most of these fish have high posterior probability of

being Pure Cutts. The same is true for the 150 simulated steelhead—all but a few of them

have posterior probability greater than .9 of being in the Pure St category. In other words,

with data similar to those from Whiskey Creek, and with many purebred individuals of

each species sampled, it is unlikely that any purebred individual will receive high posterior

probability of being in a non-purebred genotype frequency category. Figure 6.5(c) shows

the probability of being in either of the Pure Cutt or Pure St categories for the 41 simulated

hybrid fish. The different symbols denote the true genotype frequency class of each fish. The

F1 and F2 individuals are most readily indentified as being hybrids of some sort. The various

backcrossed categories, however, contain some members with high posterior probabilities of

being Pure Cutt or Pure St—they are not easily detected as hybrids.

It appears difficult to make clear distinctions between the different hybrid genotype

frequency classes with the genetic data used. Figure 6.6(a) shows the posterior probabilities

of inclusion in the 8 genotype frequency classes for the 20 F1 hybrids in descending order

of the posterior probability that they are F1’s. While many of them have high posterior

probability of being F1, there is also one with posterior probability greater than .5 of being

in the Pure St category. For the non-F1 hybrids, the situation is even less promising. Of the

10 F2 individuals (the first 10 individuals in Figure 6.6(b)), not one of them has posterior

probability greater than .5 of being in the F2 category. Finally, for the backcrossed genotype

frequency classes, as the final 11 columns in Figure 6.6(b) reveal, there is little relationship

between a fish’s true genotype frequency class and the estimated posterior probability of

being in that class.
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Analysis 4

This analysis reveals that, even if all the loci available have great allele frequency differences

between the species, many loci are still required to distinguish individuals from genotype

frequency classes beyond the two pure categories and F1’s. All the simulated Pure Cutt and

Pure St fish had very high posterior probabilities of being from their respectively correct

categories. The same is true of the F1’s as shown in Figure 6.7(a). Each of them has

posterior probability near 1 of being from the F1 category. However, for the F2’s and

beyond, the story is mixed. Four of the F2’s have posterior probability greater than .9 of

being in the F2 category. However, four of them also have posterior probabilities lower than

.5. Within the backcrossed categories, distinctions are even less reliable. It is not difficult

to see why this might be the case with as few as 12 loci, even if all the loci were perfectly

diagnostic (i.e., there were only private “cutthroat” and “steelhead” alleles at each). For

example, an individual in the St (Bx)2 category, with probability (1 − .0625)12 = .46, will

have no single locus genotypes homozygous for cutthroat origin, and will thus look very

much like a St Bx individual. For all of these 21 second-generation (or beyond) hybrids the

posterior probability of being in a genotype frequency class “beyond” F1 is quite high (> .99

for all but one). In that sense, they may be reliably categorized as “F2 or backcrossed” by

the method.

6.6 Discussion

I have described a method for Bayesian inference in populations of recently hybridized

species. The four short exercises in data analysis using the method bring three main issues to

attention. The first is that it requires many markers, and substantial genetic differentiation

between the species at those markers to be able to reliably distinguish hybrids in classes

beyond the F1 class. For many problems, it may be preferable to include only four categories

analogous to Pure Cutt, Pure St, F1, and “F2 and beyond.” Alternatively, one could plan to

collect data on many loci. Doing so, however, increases the chance that the assumption of

unlinked loci will be violated. It would be possible to model the case of linked loci if one knew

the recombination fractions between loci. The genotype frequency class at one marker would
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then depend on the genotype frequency classes at the other markers on the chromosome.

Just like the identity-by-descent process along homologous chromosomes, this “genotype

frequency class” process would be non-Markovian. It is from this non-Markovian process

that one would gain the information (though probably very little) to distinguish different

hybrid classes within the same genotype frequency class using linked markers. In a strict

analysis, linked markers and the possibility of linkage disequilibrium among conspecifics at

those markers would also necessitate the use of haplotype frequency parameters rather than

the allele frequency parameters ΘA and ΘB. While the necessary computations for this

sort of model could all be done in terms of the underying vector of segregation patterns

at each locus, the use of some sort of approximation, for example a Markov approximation

to the “genotype frequency class” process along the chromosome as taken by McKeigue

(1998) in a related problem, is also a possibility.

Another issue is the importance of the sampling model used. In the case of the model

as described in this chapter, individuals are assumed drawn at random from a population

which is a mixture in the proportions π of individuals from the different genotype frequency

classes. This is violated in the case of the cutthroat trout data, because when the biologists

collected the specimens, they were explicitly trying to obtain pure cutthroat, and hence

throwing back those individuals that looked like steelhead or hybrids. Clearly, it must

not be easy to distinguish cutthroat juveniles from steelhead or hybrid juveniles on the

basis of morphological characters. In order to estimate accurately the proportion of hybrids

in a locale, or even to estimate accurately the posterior probability that an individual

is a hybrid, it is imperative to design the study with those goals in mind. Having an

explicit model, like the one described in this chapter, that includes the sampling of the

organisms is an asset, since the model may be tailored to particular sampling schemes. For

example, it would be possible to model stratified sampling in which sampled organisms were

first put into “possibly hybrid” and “probably purebred” categories on the basis of their

morphological traits, and then a random subset of individuals from each of those categories

was genetically typed. Extending the present model to such a scenario requires only that

two different mixing proportions be used for the respective samples, i.e., a vector πh for

the “possibly hybrid” sample and a πp for the “probably pure” sample. The specification
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of the latent data and allele frequency parameters would remain the same, and the MCMC

would proceed with very little modification. Such a sampling scheme might be very useful

for species in which hybridization is rare, and leads to some morphological distinction of

the hybrid individuals that could be used to concentrate sampling upon them.

Finally, the analysis of the real data exposes a difficulty in the Bayesian analysis of finite

mixtures. In this case, there are only three individuals with high posterior probability of

being hybrids, yet there are 6 different hybrid genotype frequency classes. Hence, much

of the time during the running of the Markov chain for MCMC, some of the components

corresponding to those genotype frequency classes will be empty, and they will never have

many individuals allocated to them. This makes the results more sensitive to the prior

chosen for π than it would be if all the genotype frequency classes were well represented

in a large sample, and provides another argument for reducing the number of components

used in the model to two pure categories, an F1 category, and then the “F2 and beyond”

category. Fortunately, however, in the Gibbs sampling, individuals still mix easily between

the empty or nearly-empty genotype frequency classes. This contrasts with the Bayesian

analysis of normal mixtures in which trapping states are often encountered with nearly-

empty components (Diebolt and Robert 1994). The distinction here occurs because the

component-specific parameters are the fixed quantities Gg, which are not affected by the

number of fish allocated to each component. This feature would also make it straightforward

to implement a reversible jump MCMC (Green 1995) sampler to allow the number of

genotype frequency classes to be modeled as an unknown random variable whose posterior

distribution was to be determined.
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Chapter 7

CONCLUSIONS

Each of the preceding five chapters presents a Monte Carlo method for computing the

likelihood function or the posterior probability in an inference problem in population genet-

ics. The Monte Carlo method is a computational tool for approximating expectations, and,

therefore, many of the advances presented in this dissertation are concerned with meth-

ods for computing particular quantities. However, the novel developments herein are not

to be found solely in the computational methods—each chapter includes some degree of

stochastic modeling necessary to actually define the quantities (likelihoods, posterior prob-

abilities, etc.) that are to be computed. While some chapters have a computational focus,

others deal more directly with the underlying modeling issues. However, in each case, the

computational and modeling elements are complementary to one another in a synergistic

fashion—with the new computational methods it is possible to do inference using stochastic

models that are more faithful representations of the actual population genetic processes

than the models previously used. Likewise, judicious modeling choices may simplify the

computational challenges that must be confronted. Here I summarize the work in each of

Chapters 2 to 6 with particular attention to the distinction between the stochastic modeling

and the computational component of each.

Chapter 2 focuses heavily on a computational method—importance sampling—to com-

pute the likelihood for the effective size Ne of a population with discrete generations. The

stochastic modeling involved is standard, with the genetic samples taken from the popula-

tion being easily recognized as observations of a hidden Markov chain. This recognition,

however, makes possible the importance sampling method which employs forward-backward

methods for hidden Markov chains (Baum et al. 1970) and a variate transformation previ-

ously used in theoretical genetics (Cavalli-Sforza and Edwards 1967).

Chapter 3, on the other hand, deals primarily with issues of the stochastic modeling of
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genetic inheritance in populations. It details some of the inaccuracies of the Wright-Fisher

model as regards fixation probabilities when the census size of the population is known to be

larger than the variance effective size of the population. It then describes a different model

for genetic inheritance. This model is based on a Pólya urn scheme, and is a special case of

the conditional branching process models investigated by Karlin and McGregor (1965).

This urn scheme provides a better model of genetic inheritance in populations of known

census size, and is used to define a stochastic model that depends on the parameter λ, the

ratio of effective to census breeders in a population. At the end of Chapter 3, it is shown

that implementing Markov chain Monte Carlo (MCMC) using the urn model is simpler than

trying to implement MCMC while adhering strictly to the Wright-Fisher model. This is

thus a case in which the more accurate stochastic model also carries certain computational

advantages.

The main modeling development in Chapter 4 is a stochastic model for genetic trans-

mission that faithfully represents the life history features of salmon populations with semel-

parous individuals maturing at different ages. This model uses the urn model to represent

genetic inheritance between different components of the salmon population (e.g., juveniles

and adults of different ages). The connections between these different population compo-

nents are summarized by a directed graph between them. The first half of the chapter

provides a clear example of how graphical modeling can assist in the development, por-

trayal, and understanding of probabilistic dependence in complex biological systems. The

second half of the chapter shows how, with the neighborhood structure easily inferred from

the graph, an MCMC algorithm may be implemented to estimate λ in salmon populations.

Chapters 5 and 6 both deal with genetic admixture. Chapter 5 is more concerned with

computational issues than modeling. There are a few very slight modeling concerns in

extending the model of Pritchard et al. (2000) to include a purebred category, however,

the primary advances in the chapter are 1) the application of a forward-backward algorithm

to compute the probability of an individual’s multilocus genotype, and 2) the development of

a reversible jump MCMC scheme that allows computation of the Bayes factor for comparing

the model with purebred categories to the model without those categories. Chapter 6

employs standard MCMC techniques for the Bayesian analysis of mixtures, but it does so
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within a different modeling framework than that pursued in Chapter 5. While the model

adopted in Chapter 5 derives from an heuristic model for structured populations, proposed

by Pritchard et al. (2000) to encompass a wide range of population scenarios, the efforts

of Chapter 6 are directed toward explicitly modeling the hybridization process between

different species. This allows a more natural and interpretable analysis of genetic variation

in sympatric populations of occasionally hybridizing species.

In conclusion, I have presented five applications of Monte Carlo methods to inference

from population genetics data. These methods allow inferences to be made based on the

likelihood function in the frequentist setting, or on the posterior probability function in

the Bayesian setting. These Monte Carlo methods allow the computation of likelihoods or

posterior probabilities from complex models, and this, in turn, permits a greater degree of

biological reality in the stochastic models used.

There is considerable room for future work in the field of inference from population

genetics data. In some of the chapters, I have indicated extensions that could be made.

There are also certainly some estimation problems in conservation genetics that would

require either custom-tailoring of the models used here or completely new models altogether.

The treatment of inference problems in this dissertation provides several examples of the

use of Monte Carlo, likelihood and Bayesian analysis, and graphical modeling, and I hope

that these examples will illuminate and stimulate the future application of these useful tools

to problems in conservation genetics.
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Appendix A

MONTE CARLO VARIANCE OF A PRODUCT

It seems intuitively reasonable that if one is estimating a product of independent proba-

bilities by Monte Carlo (for example a likelihood that factorizes over loci), then an efficient

Monte Carlo estimator will be obtained by estimating each probability separately and then

multiplying the estimators together at the end. This will be more efficient than taking the

Monte Carlo average of the product of the probabilities. Though this is well-known, I could

not find a reference to it in the literature. Therefore, I prove it here, with the caveat that I

would not be surprised if a more succinct proof were available.

Theorem I: monte carlo variance of a product.

Let Xj1, . . . , Xjm, j = 1, . . . , J be J ≥ 2 sequences of independent random variables,

each of length m. For each j, Xj1, . . . , Xjm are identically and independently distributed

with EXji = µj . Suppose that we are interested in estimating
∏J

j=1 µj . Then the two

estimators

µ̄ =
J∏

j=1

1
m

m∑
i=1

Xji and µ̃ =
1
m

m∑
i=1

J∏
j=1

Xji

are both unbiased for
∏J

j=1 µj , but Var(µ̄) ≤ Var(µ̃), with strict inequality holding when

the Xji are non-degenerate random variables for at least two j ∈ {1, . . . , J}.
Proof: Unbiasedness is straightforward to show:

E(µ̄) = E
( J∏

j=1

1
m

m∑
i=1

Xji

)
=

J∏
j=1

1
m

m∑
i=1

EXji =
J∏

j=1

µj (A.1)

and

E(µ̃) = E
(

1
m

m∑
i=1

J∏
j=1

Xji

)
=

1
m

m∑
i=1

J∏
j=1

EXji =
J∏

j=1

µj . (A.2)

To show that Var(µ̄) ≤ Var(µ̃), it will suffice to show that Eµ̄2 ≤ Eµ̃2, because the squares

of the expected values of each estimator will be equal and Var(X) = EX2 − [EX]2. We
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start by simplifying the expression for Eµ̄2.

Eµ̄2 = E
( J∏

j=1

1
m

m∑
i=1

Xji

)2

= E
( J∏

j=1

1
m2

( m∑
i=1

Xji

)2)

=
J∏

j=1

1
m2
E
( m∑

i=1

X2
ji + 2

m∑
i=1

∑
k<i

XjiXjk

)

=
J∏

j=1

1
m2

( m∑
i=1

EX2
ji + 2

m∑
i=1

∑
k<i

µ2
j

)
(by independence)

=
J∏

j=1

1
m2

(
mEX2

ji + m(m− 1)µ2
j

)

=
J∏

j=1

1
m

(
EX2

ji + (m− 1)[EX2
ji −Var(Xji)]

)

=
J∏

j=1

(
EX2

ji −
(m− 1)

m
Var(Xji)

)
.

We know that Var(Xji) ≤ EX2
ji, so we may write Var(Xji) = δjEX2

ji, where 0 ≤ δj ≤ 1.

Doing so, we may now rewrite Eµ̄2.

Eµ̄2 =
J∏

j=1

(
EX2

ji −
(m− 1)δj

m
EX2

ji

)

=
J∏

j=1

(
[(1− δj) + δj/m]EX2

ji

)

=
J∏

j=1

[
(1− δj) + δj/m

] J∏
j=1

EX2
ji. (A.3)

In similar fashion, we simplify the expression for Eµ̃2:

Eµ̃2 = E
(

1
m

m∑
i=1

J∏
j=1

Xji

)2
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=
1

m2
E
[ m∑

i=1

( J∏
j=1

Xji

)2

+ 2
m∑

i=1

∑
k<i

( J∏
j=1

XjiXjk

)]

=
1

m2
E
[ m∑

i=1

J∏
j=1

X2
ji + 2

m∑
i=1

∑
k<i

( J∏
j=1

µ2
j

)]

=
1

m2

( m∑
i=1

J∏
j=1

EX2
ji + m(m− 1)

J∏
j=1

µ2
j

)

=
1
m

( J∏
j=1

EX2
ji + (m− 1)

J∏
j=1

[EX2
ji −Var(Xji)]

)

=
1
m

( J∏
j=1

EX2
ji + (m− 1)

J∏
j=1

[EX2
ji − δjEX2

ji]
)

=
[

1
m

+
(m− 1)

m

J∏
j=1

(1− δj)
] J∏

j=1

EX2
ji. (A.4)

And so, inspecting (A.3) and (A.4) it is clear that Var(µ̄) ≤ Var(µ̃) if and only if

J∏
j=1

[
(1− δj) + δj/m

]
≤ 1

m
+

(m− 1)
m

J∏
j=1

(1− δj), (A.5)

an inequality which may be verified as follows: note that
∏J

j=1[(1 − δj) + δj ] = 1, but the

product may be written as a sum

J∏
j=1

[(1− δj) + δj ] =
J∏

j=1

(1− δj) + φ = 1

where φ is a sum of 2J − 1 terms, each of the form∏
j∈A

δj

∏
j∈Ac

(1− δj)

where A is a non-empty subset of {1, . . . , J}, and Ac is its complement. Observe then,

J∏
j=1

(1− δj) + φ = 1

1
m

J∏
j=1

(1− δj) +
φ

m
=

1
m
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φ

m
=

1
m
− 1

m

J∏
j=1

(1− δj)

J∏
j=1

(1− δj) +
φ

m
=

1
m

+
m− 1

m

J∏
j=1

(1− δj). (A.6)

The right side of (A.6) is the same as the right side of (A.5), so to prove the inequality in

(A.5), we need merely demonstrate that

J∏
j=1

[
(1− δj) + δj/m

]
≤

J∏
j=1

(1− δj) +
φ

m
.

This may be done by noting that the left side expands into

J∏
j=1

(1− δj) + ϕ

where ϕ is a sum of 2J − 1 terms, each of which has the form

∏
j∈A

δj

mz

∏
j∈Ac

(1− δj)

where A and Ac are as above and z is the number of elements in the set A. (Since A is

non-empty, 1 ≤ z ≤ J .) For m > 1, each such term is clearly less than or equal to the

corresponding term in the sum for φ/m so ϕ ≤ φ/m. Transparently, the equality holds only

when all but one of the δj are zero. ¤
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Appendix B

OVERLAPPING GENERATIONS VIA IMPORTANCE SAMPLING

WITH THE MULTIVARIATE NORMAL DISTRIBUTION

I investigated the extension of the importance sampling methods of Chapter 2 to a

population with a Pacific salmon-like life history. While it was possible to do so, the method

allowed little flexibility in modeling and required more assumptions and approximations

than the method developed in Chapter 4. Nonetheless, the importance sampling techniques

developed are instructional, so I include a brief description of them here, as applied to

diallelic loci.

In the following, the mathematical notation departs from that adopted in the remainder

of the dissertation. In order to express vectors as bold Roman lowercase characters, and

matrices as bold, uppercase Roman characters, it is necessary here to denote random vectors

by bold, lowercase Roman letters. This should not create confusion.

B.1 Introduction to the Problem and Notation

A population is perpetuating itself forward in time. Individuals reproduce only once in

their lives, either at age 1 or at age 2. It is assumed that the census number of individuals

reproducing at time t of the different ages, Ct,1 and Ct,2, respectively, is known. It is

assumed that Ct,a individuals in a census represent Nt,a = bλaCt,ac effective individuals,

a = 1, 2. We denote the effective proportions of individuals each year as either αt,1 or αt,2

where

αt,1 =
Nt,1

Nt,1 + Nt,2
and αt,2 =

Nt,2

Nt,1 + Nt,2
.

We assume that we have genetic data at a single locus with alleles B and b. We observe

the variable Yt—the number of copies of B found in a sample of size St taken from the

gametes produced by the adults reproducing at time t. It is assumed that each age class
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contributes to the gamete pool in proportion to their α.

The frequency of the B gene among the members of different age classes depends on the

frequency of the B gene in the gamete pool from which their genes were drawn and the N

for that age class via sampling with replacement as in the Wright-Fisher model. Hence, if

we let Xt,a be the number of copies of the B gene amongst a-year-olds reproducing at time

t, we have:

Xt,a ∼ Binomial
(

Nt,a , (αt−a,1)
Xt−a,1

Nt−a,1
+ (αt−a,2)

Xt−a,2

Nt−a,2

)
.

Our genetic data samples, being assumed drawn with replacement from the gamete pool of

a given year follow a similar probability distribution

Yt ∼ Binomial
(

St , (αt,1)
Xt,1

Nt,1
+ (αt,2)

Xt,2

Nt,2

)
.

This is all presented in terms of haploid populations. The extension to diploid populations

is straightforward, and won’t be discussed.

B.2 The Likelihood

Our objective is to use the census sizes (assumed known without error, at this point) and

the genetic sample data to compute a likelihood surface for different values of λ1 and λ2.

We do this by Monte Carlo, using an importance sampling function which we construct

by applying a multivariate normal approximation to this process and then discretizing it.

The likelihood function may be derived using the dependence structure of the latent and

observed variables.

The dependence structure is that shown in Figure B.1. The joint probability of all the

Xt,a’s (denoted by X) and all the Yt’s (denoted by Y) for different values of λ1 and λ2

(denoted collectively by λ) is

Pλ(X,Y) = Pλ(X0,1, X0,2, X1,2)Pλ(X1,1|X0,1, X0,2)Pλ(Y0|X0,1, X0,2)Pλ(Y1|X1,1, X1,2)

×
T∏

t=2

[
Pλ(Yt|Xt,1, Xt,2)

2∏
a=1

Pλ(Xt,a|Xt−a,1, Xt−a,2)

]
(B.1)
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X0,1

X0,2

Y0

X1,1

X1,2

Y1

X2,1

X2,2

Y2
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Y3
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Y4

X5,1
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Y5

X6,1

X6,2

Y6

Figure B.1: A directed graph showing the dependence structure of the Xt,a’s and the Yt’s.

where Pλ(X0,1, X0,2, X1,2) is a prior for X0,1, X0,2, X1,2—three variables that we will inte-

grate out (so we are actually considering an integrated likelihood).

The likelihood for λ is just the sum over all X of that quantity and we will approximate

it by Monte Carlo:

Pλ(Y) =
∑
X

Pλ(X,Y) ≈ 1
m

m∑
i=1

Pλ(X(i),Y)
Qλ(X(i))

(B.2)

where Qλ(X) is a discrete probability distribution for X and each X(i) is independently

simulated from the distribution Qλ(X). This is going to work best when Qλ(X) is as close

as possible to Pλ(X|Y). The next section describes a method for simulating from a Qλ(X)

which is similar to Pλ(X|Y).

B.3 Constructing Qλ(X) so it is close to Pλ(X|Y)

We proceed much as in Chapter 2, using the normal approximation to the binomial. We

first apply the variance-stabilizing, arc-sine square-root transformation, and think in terms

of continuous variables:

γt,a = sin−1

(
Xt,a

Nt,a

)1/2

t = 1, . . . , T ; a = 1, 2

φt = sin−1

(
Yt

St

)1/2

t = 1, . . . , T. (B.3)

Recall that if X ∼ Binomial(n, p) then the corresponding transformed variable has an

approximate normal distribution with mean sin−1√p and variance 1/(4n). Thus we have
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for 2 ≤ t ≤ T or t = 1 and a = 1, that γa,t is approximately normal with mean

µ = sin−1

(
(αt−a,1)

Xt−a,1

Nt−a,1
+ (αt−a,2)

Xt−a,2

Nt−a,2

) 1
2

(B.4)

and variance 1/(4Nt,a).

We can approximate the mean given in (B.4) by a linear combination:

µ ≈ (αt−a,1) sin−1

(
Xt−a,1

Nt−a,1

)1/2

+ (αt−a,2) sin−1

(
Xt−a,2

Nt−a,2

)1/2

≈ (αt−a,1)γt−a,1 + (αt−a,2)γt−a,2 (B.5)

It is extremely useful to be able to express the mean of each γa,t as this linear combination

of the preceding γa,t’s. The same approximation is useful for determining the mean of the

distributions for each φt. This approximation is quite good for values of γ that are in the

middle of the range 0 to π/2, but becomes less accurate with γ’s near the ends of that range.

(This is one of the approximations that is not altogether satisfactory).

The fact that the mean can be written as a linear combination of the preceding γ’s

means that for every γa,t, 2 ≤ t ≤ T or t = 1 and a = 1, and for every φt, 0 ≤ t ≤ T , we

may write:

γt,a = (αt−a,1)γt−a,1 + (αt−a,2)γt−a,2 + εt,a (B.6)

φt = (αt,1)γt,1 + (αt,2)γt,2 + δt, (B.7)

approximately, where εt,a and δt are independent, normally-distributed random variables

with mean zero and variance 1/(4Nt,a) or 1/(4St), respectively; thus, we discover that we

can write every γt,a or φt as a linear combination of the ε’s and δ’s and the three initial γ’s:

γ0,1, γ0.2, and γ1,2.

Continuing, we find for those three initial γ’s a prior distribution that is commensurate

with the prior on the initial allele counts— Pλ(X0,1, X0,2, X1,2). We construct this as a

multivariate normal distribution, MVN3(µinit,Σinit), with three components. This is a

column vector with three components, γ0,1, γ0,2, and γ1,3. By appending to this vector,

additional components, one for each independent εt,1 (0 < t ≤ T ) and εt,2 (1 < t ≤ T )
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and δt (0 ≤ t ≤ T ), we may construct a new multivariate random vector with 3(T + 1)

components, which we shall call w. We have

w ∼ MVN3(T+1)(µ,Σ),

where the first three components of µ are the three elements of µinit, with the rest being zero

(because the ε’s and δ’s are error terms with mean zero). And with the upper 3×3 square of

Σ holding the elements of Σinit with the remaining entries in Σ being zero (because all the

ε’s and δ’s are independent), except for the diagonal entries which include the appropriate

variance terms 1/(4Nt,a) for εt,a and 1/(4St) for δt. The notation here departs from the

rest of the thesis in that w, though lowercase, is a random variable—this is to make the

notation more familiar in the matrix algebra that is coming up.

Recall that we can express every γ and every φ as a linear combination of variables which

precede them in the directed graph of Figure B.1, and hence they may all be expressed as

linear combinations of the elements of w. Let us denote all the γ’s by γ = (γt,a)
T,2
t=0,a=1 and

all the φ’s by φ = (φt)T
t=0. Then appending those together into a single vector, say (γ,φ),

we have a vector of all the variables we are interested in (the angularly transformed versions

of the Xt,a’s and the Yt’s). Since these may all be expressed as a linear combination of w

we may write (γ,φ) as the product of a matrix A and the vector w:

(γ,φ) = Aw (B.8)

where A is a matrix with 3(T +1) rows and 3(T +1) columns. It is not difficult to compute

the entries of A. Each row of A is a linear combination of preceding rows, so the matrix A

may be constructed recursively. For example, write (γ,φ) as the column vector

(γ0,1, γ0,2, γ1,1, γ1,2, γ2,1, γ2,2, . . . , γT,1, γT,2, φ0, φ1, . . . , φT )′

and w as the column vector

(γ0,1, γ0,2, ε1,1, γ1,2, ε2,1, ε2,2, . . . , εT,1, εT,2, δ0, δ1, . . . , δT )′.

Then, to satisfy (B.8), the first row of A, which we denote as the row vector A[1], must

clearly be (1, 0, 0, . . . , 0). Likewise, A[2] = (0, 1, 0, 0, . . . , 0) and the fourth row, A[4] =
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(0, 0, 0, 1, 0, 0, . . . , 0). By (B.8), the dot product of the third row, A[3] with w must γ1,1;

hence by (B.6), A[3] = (α0,1, α0,2, 1, 0, 0, . . . , 0). The fifth row of A dotted with w must be

γ2,1. Again, by (B.6) we have

γ2,1 = α1,1γ1,1 + α1,2γ1,2 + ε2,1.

However, recalling that γ1,1 = A[2] ·w and γ1,2 = A[4] ·w, we may write

γ2,1 = α1,1(A[2] ·w) + α1,2(A[4] ·w) + ε2,1

= (α1,1A[2] + α1,2A[4]) ·w + ε2,1

= (α1,1A[2] + α1,2A[4] + (0, 0, 0, 0, 1, 0, 0, . . . , 0)) ·w. (B.9)

In other words, A[5] = (α1,1A[2] +α1,2A[4] +(0, 0, 0, 0, 1, 0, 0, . . . , 0)) is a linear combination

of A[2], A[4], and a vector containing a single non-zero element which picks out the error

term ε2,1 from amongst the components in w. Proceeding forward, computing the entries

of A[6], A[7], and so forth, is done similarly.

By the standard properties of multivariate normals, it follows that the vector (γ,φ) has

a MVN3(T+1)(µjoint,Σjoint) distribution, where

µjoint = Aµ and Σjoint = AΣA′

and A′ denotes the matrix transpose of A. This gives us a normal approximation to the

joint distribution of γ and φ, the angularly transformed allele frequencies in the population

age groups and the genetic samples, respectively. However, to construct Qλ(X) which is

close to Pλ(X|Y), we desire an approximation to the conditional distribution of X given

Y. Such an approximation may be derived using the conditional distribution of γ given φ,

which we will now deduce from the joint distribution of γ and φ by standard methods for

multivariate normal variables.

Notice that Σjoint is composed of a part for γ, a part for φ and a part for the covariances

between γ and φ. Also µjoint consists of a part for γ and a part for φ. They may be

partitioned as

µjoint =

 µγ

µφ

 and Σjoint =

 Σγγ Σγφ

Σφγ Σφφ

 .
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Therefore, in order to find the conditional distribution of γ given φ we may use a standard

result about the distribution of a subset of components of a multivariate normal random

vector, conditional upon the values of the remaining components:

γ|φ ∼ MVN2(T+1)(µQ,ΣQ)

where

µQ = µγ + ΣγφΣ−1
φφ(φ− µφ)

and

ΣQ = Σγγ −ΣγφΣ−1
φφΣ

′
γφ.

With µQ and ΣQ as calculated above, we are in a position to simulate values of γ and

then transform them back to X’s, essentially discretizing the distribution of γ. Some care

must be taken to ensure that alleles are not lost from the population when they appear

in later samples (for example, we must never simulate Xt,1 and Xt,2 to be zero if the B

allele appears in the sample from the gametes produced at time t), and further, some care

should be taken to ensure that it is not very difficult to compute the probability Q(X(i))

of each resulting X(i) simulated from this scheme. First, we describe a general method for

simulating γ from a MVN2(T+1)(µQ,ΣQ) distribution.

Since Σ is symmetric matrix and positive definite, it is possible to compute its Cholesky

factor, L. L is a lower triangular matrix having the property that

LL′ = ΣQ.

It is well known that if z = (z1, . . . , z2(T+1))′ is a column vector of independent, univariate

normal random variables with variance one and mean zero, then the quantity

µQ + Lz

will have the MVN2(T+1)(µQ,ΣQ) distribution. This is one way to simulate realizations

of γ. We note here, however, that even after the Cholesky factor has been computed, the

computation to simulate γ this way increases quadratically in 2(T + 1). I believe it should

actually be possible to exploit the second-order Markov structure here do something that

is linear in 2(T + 1). But I have not pursued this.
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Having the Cholesky factor, we can simulate γ’s forward in time from their distribution

condition on φ. For simplicity, I am going to assume that no alleles are going extinct, and

all frequencies are intermediate, so we don’t have to worry about writing code for careful

bookkeeping. From above, we have that we can simulate the first element of γ, that is γ0,1,

by simulating a standard unit normal, z
(i)
1 and transforming it—γ

(i)
0,1 = µQ1 + z

(i)
1 L1,1. We

transform that back to an X0,1 by the discretization

X
(i)
0,1 = bN0,1 sin(γ(i)

0,1)
2 + 1/2c.

The probability of simulating this X0,1 is the area under the curve of a N(µQ,1, L
2
1,1) random

variable between

sin−1

(
X

(i)
0,1

N0,1
− 1

2

) 1
2

and sin−1

(
X

(i)
0,1

N0,1
+

1
2

) 1
2

.

Proceeding we could then simulate γ
(i)
0,2 = µQ,2 + z

(i)
1 L2,1 + z

(i)
2 L2,2, and similarly transform

that into an X
(i)
0,2. Now, however, the probability of simulating that X

(i)
0,2, given X

(i)
0,1 still

depends on the original value of z
(i)
1 (and hence on the actual continuous value γ

(i)
0,1). This

problem also occurs in the non-overlapping generations case. By this approach, in order to

be correct in computing Qλ(X(i)) (and, hence, most efficient in the Monte Carlo estimation

of Pλ(Y)) one should do the multivariate integral of the joint density of all the γt,a’s given

X(i). It can be shown that even if the multivariate integral is not performed, then the Monte

Carlo estimator for Pλ(Y) still has the correct expectation. Nonetheless it is more efficient

and cleaner to simulate γ’s and transform them to X’s as follows:

1. Realize γ
(i)
0,1 = µQ,1 + z

(i)
1 L1,1.

2. Convert that to an X
(i)
0,1 ← bN0,1 sin(γ(i)

0,1)
2 + 1/2c

3. Define z∗1 ←
(

sin−1

(
X

(i)
0,1

N0,1

) 1
2

− µQ1

)
/L1,1

4. Simulate γ
(i)
0,2 = µQ,2 + z∗1L2,1 + z

(i)
2 L2,2,
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and so forth. The key difference here being the use of z∗1 rather than the z
(i)
1 in determining

the distributions for the future γt,a’s.

By this procedure, it is possible to simulate independent realizations X(i), i = 1, . . . , m,

and to compute the probability Qλ(X(i)) of each of these as the simple product of areas

under normal densities (rather than by doing a multidimensional integration). The details

are omitted, but follow quite simply from the formulation given above. These realizations

may then be used in (B.2) to approximate Pλ(Y).

B.4 Simulated Data

To assess the potential of this method, I applied it to simulated data. I simulated the data

as follows: I entered a census size, C = 200 haploids, which was assumed to be the total

census size each year. Then I entered fractions of the census population that were age 1 or

2. These were r1 and r2 = 1 − r1, which I set to be each .5. I then simulated each Ct,1

from a Binomial(C, r1) distribution and set Ct,2 = C − Ct,1. I then set “true” values of

λ1 = 1.0 and λ2 = 1.2 at which to simulate the data and converted the census sizes into

effective size by Nt,a = bλaCt,ac. Then, for J diallelic loci, I drew X0,1, X0,2, and X1,2

from respective Binomial(Nt,a, .5) distributions, then I simulated gamete frequencies and

gene copy numbers forward in time, and for each time step drew a sample of 500 haploid

gametes.

I used an initial mean vector µinit and initial variance vector Σinit that approximated the

distribution used to simulate X0,1, X0,2, and X1,2. In actual practice one would want to use

some sort of diffuse prior that accounted for the correlation between those three variables,

but I did not derive such a diffuse prior for those allele frequencies. Instead, µinit was set

to a three-vector of sin−1
√

.5’s, and Σinit included values that were commensurate with the

prior probability described above. This is not a “non-informative” prior, at all, but I used

it for this trial.

For a mesh of values of λ1 and λ2 between the values of 0.25 and 2.25 in steps of .25,

I approximated Pλ(Y) by (B.2) using m = 10, 000 for each different pair (λ1, λ2). The

resulting likelihood surface is shown in the contour plot of Figure B.2, which has a peak
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that is not too far from λ1 = 1.0 and λ2 = 1.2.

This appendix has described the implementation of an importance sampling method

for λ in the context of overlapping generations under the simplest possible data scenario—

diallelic loci at intermediate frequencies. Despite its application to a simple scenario, the

formulation of the problem in this manner is quite challenging, and it would be even more

challenging to extend it to more complex situations. Therefore I did not pursue this method

any further. The techniques presented in Chapter 4 are clearly far more versatile than the

technique investigated here.
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Figure B.2: Contour plot of the likelihood surface for λ = (λ1, λ2) from simulated data.
Importance sampling was used to estimate the likelihood at an array of points (λ1, λ2) from
(0.25,0.25) to (2.25,2.25) in increments of 0.25. These points are shown, with the estimated
likelihood value appearing above them. The lines in the figure are interpolated contour
lines of the likelihood surface. The true values, under which the data were simulated, are
λ1 = 1.0 and λ2 = 1.2.
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